The quality characteristics of granules prepared from water and 50% ethanol extracts of mulberry and blueberry were investigated. The total polyphenol and total flavonoid contents of mulberry and blueberry were higher in the 50% ethanol extract than those in the water extract. Total anthocyanin content was highest in the 50% mulberry ethanol extract (470.91 mg/100 g). Oxygen radical absorbance capacity (ORAC) of the mulberry and blueberry extracts was 335.37 μmoles TE/g and 238.14 μmoles TE/g, respectively. Superoxide radical scavenging activity of the mulberry and blueberry extracts increased with an increase in extract concentration. Total polyphenol and flavonoid contents of granules from the mulberry extract were 4.83 mg/mL and 3.49 mg/mL, respectively. Total anthocyanin content of granules from the mulberry and blueberry extracts was 76.26 mg/100 g and 75.26 mg/100 g, respectively. Electron donating ability and ORAC of granules from the mulberry and blueberry extracts were 45.09% and 24.10%, 87.65 μmoles TE/g and 57.59 μmoles TE/g, respectively. Granules that were stored for 7 weeks at room temperature had low anthocyanin content degradation and Hunter color values (L, a, and b).
This study investigated the antioxidant activity of functional beverage concentrates containing herbal medicine extracts (FBCH) using various antioxidant assays, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and reducing power assay. The total polyphenolic content of FBCH (81.45 mg/100 g) was higher than Ssanghwa tea (SHT, 37.56 mg/100 g). The antioxidant activities of FBCH showed 52.92% DPPH and 55.18% ABTS radical scavenging activities at 100 mg/mL, respectively. FBCH showed significantly higher antioxidant activities compared to the SHT (DPPH, 23.43%; ABTS, 22.21%; reducing power optical density; 0.23, P<0.05). In addition, intracellular reactive oxygen species generation significantly decreased in a concentration-dependent manner following FBCH treatment. These results suggest that the addition of herbal medicine extract contributes to the improved functionality of beverage concentrates.
In this study, three GRAS (generally recognized as safety) strain was isolated from Doenjang and Cheonggukjang and identified as a protease-producing microorganism, following the appearance of a clear zone around its colony when cultured on a medium containing skim milk. Based on an analysis of the nucleotide sequence of 16S ribosomal RNA, the strains wereas identified as Bacillus amyloliquefaciens and wereas therefore named Bacillus amyloliquefaciens CDD5, Bacillus amyloliquefaciens CPD4, and Bacillus amyloliquefaciens CGD3. Here, we analyzed the protease and α-glucosidase inhibitory activities of the three B. amyloliquefaciens strains. Among the isolated strains, B. amyloliquefaciens CGD3 exhibited the highest protease activity (9.21 U/mL, 24 hr). The protease activities of B. amyloliquefaciens CDD5 and B. amyloliquefaciens CPD4 reached 1.14 U/mL and 8.02 U/mL, respectively, at 48 hr. The proteases from the three B. amyloliquefaciens strains showed the highest activities within a pH range of 8.0-9.0 at 50°C, and casein was found to be the preferred substrate on evaluating enzyme activity in the substrate specificity assay. The B. amyloliquefaciens strains exhibited maximal growth when the nutrient broth medium had an initial pH within the range of 5.0-10.0, 6-9% sodium chloride (NaCl), and 5% glucose. B. amyloliquefaciens CDD5 exhibited a low α-glucosidase inhibition rate (5.32%), whereas B. amyloliquefaciens CPD4 and B. amyloliquefaciens CGD3 exhibited relatively higher inhibition rates of 96.89% and 97.55%, respectively.
In this study, one GRAS strain was screened from doenjang, a traditional Korean fermented food, as a microorganism producing amylase due to the formation of a clear zone on the medium including soluble starch. From the analysis of the gene sequence of 16S ribosomal RNA, the strain was identified as Bacillus subtilis and was therefore named Bacillus subtilis CBD2. When the nutrient broth medium was prepared with 3% NaCl, 5% glucose, and the initial medium pH 7.0, the B. subtilis CBD2 showed maximum growth. Among soluble starch, corn starch, maize amylopectin, and wheat starch, soluble starch was the most effective carbon source in the production of amylase by B. subtilis CBD2. The amylase from B. subtilis CBD2 showed the highest activities at pH 8.0 and 50°C, and corn starch was the most proper substrate for the enzyme activity. When corn starch was used as a substrate, the production of sugars through enzyme activity increased for 24 h, and then the enzyme activity became constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.