Abstract. In recent year, flood becomes a serious issue in Tibetan Plateau (TP) due to climate change. Many studies have shown that ensemble flood forecasting based on numerical weather predictions can provide early warning with extended lead time. However, the role of hydrological ensemble prediction in forecasting flood volume and its components over the 10 Yarlung Zangbo River Basin (YZR), China has not been systematically investigated. This study adopts Variable Infiltration Capacity (VIC) model to forecast annual maximum floods (MF) and annual first floods (FF) in YZR based on precipitation, maximum and minimum temperature from European Centre for Medium-Range Weather Forecasts (ECMWF). Nsimulations is proposed to account for more scenarios of parameters in VIC and shows improved flood simulation. Ensemble flood forecasting system can skilfully predict MF with a lead time of more than10 days, and has skill in forecasting the 15 snowmelt-related components in about 7 days ahead. The accuracy of forecasts for FF is inferior with a lead time of only 5 days. The performance in 7-day accumulated flood volumes is better than the peak flows. The components in baseflow for FF are irrelevant to lead time, whilst for MF an obvious deterioration in performance with lead time can be perceived. The snowmelt-induced surface runoff is the most poorly captured component by the system, and the well-predicted rainfallrelated components are the major contributor for good performance. From this study, it is concluded that snowmelt-induced 20 flood volume plays an important role in YZR Basin especially in FF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.