DG protects Aβ(1-42) -induced AD models in vitro and in vivo through reducing activation of microglia and inflammation, which may be involved in MAPK and NF-κB pathways.
BackgroundPanaxatriol saponins (PTS), an extract from the traditional Chinese herb Panax notoginseng, which has been used to treat ischemic stroke for many years in China. However, the mechanism underlying the effects of PTS remains unclear. This study aimed to determine whether PTS can protect against ischemic brain injury by promoting angiogenesis and to explore the possible mechanism by which it promotes angiogenesis.MethodsMiddle cerebral artery occlusion (MCAO) was induced in rats, and neurological deficit scores and brain infarct volumes were assessed. Micro-Positron emission tomography (PET) was adopted to assess cerebral perfusion, and real-time PCR and western blotting were used to evaluate vascular growth factor and Sonic hedgehog (Shh) pathway component levels. Immunofluorescence staining was used to determine capillary densities in ischemic penumbrae.ResultsWe showed that PTS improved neurological function and reduced infarct volumes in MCAO rats. Micro-PET indicated that PTS can significantly increase 18F-fluorodeoxyglucose (18F-PDG) uptake by ischemic brain tissue and enhance cerebral perfusion after MCAO surgery. Moreover, PTS was able to increase capillary densities and enhance angiogenesis in ischemic boundary zones and up-regulate vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1) expression by activating the Shh signaling pathway.ConclusionThese findings indicate that PTS exerts protective effects against cerebral ischemic injury by enhancing angiogenesis and improving microperfusion.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-017-1579-5) contains supplementary material, which is available to authorized users.
BackgroundIt is well known that Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory deficits and cognitive decline. Amyloid-β (Aβ) deposition and synaptic dysfunction play important roles in the pathophysiology of Alzheimer’s disease (AD). The Huatuo Zaizao pill (HT) is a Traditional Chinese Medicine (TCM) that has been used clinically for many years in China, mainly for post-stroke rehabilitation and cognitive decline; however, the mechanism of cognitive function is not clear. In this study, we investigated the effect of HT on hippocampal synaptic function, Amyloid-β (Aβ) deposition in APP/PS1 AD transgenic mice.MethodSix-month-old APP/PS1 transgenic (Tg) mice were randomly divided into control, HT-treated, and memantine (MEM)-treated groups. Then, these groups were orally administered vehicle (for the control), HT (0.25 g/kg) and MEM (5 mg/kg) respectively for 4 weeks. The Morris water maze, Novel Object Recognition, and Open field tests were used to assess cognitive behavioral changes. We evaluated the effects of HT on neuronal excitability, membrane ion channel activity, and synaptic plasticity in acute hippocampal slices by combining electrophysiological extracellular tests. Synaptic morphology in the hippocampus was investigated by electron microscopy. Western blotting was used to assess synaptic-associated protein and Aβ production and degrading levels. Immunofluorescence staining was used to determine the relative integrated density.ResultsHT can ameliorate hippocampus-dependent memory deficits and improve synaptic dysfunction by reversing LTP impairment in APP/PS1 transgenic mice. Moreover, HT reduces amyloid plaque deposition by regulating α-secretase and γ-secretase levels.ConclusionHT can improve the learning and memory function of APP/PS1 transgenic mice by improving synaptic function and reducing amyloid plaque deposition.Electronic supplementary materialThe online version of this article (10.1186/s12906-018-2237-2) contains supplementary material, which is available to authorized users.
Objective To explore the neuroprotective effect and the related mechanisms of echinacoside (ECH) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease (PD) mice. Methods Parkinson’s disease is induced in mice by MPTP and the neurobehaviors of mice in different groups are observed. Then, immunohistochemistry and Western blot analysis are adopted to measure the expression of tyrosine hydroxylase (TH) and α-synuclein in the substantia nigra (SN). The content of dopamine (DA) and other neurotransmitters in the brain is detected by high-performance liquid chromatography. The expression of nerve growth factors and inflammatory factors in SN in mice in each group is measured by quantitative polymerase chain reaction. Finally, the expression of oxidative stress-related parameters in each group is measured. Results Compared with the model group, the pole-climbing time among mice in the moderate and high-dose ECH groups is significantly reduced (P < 0.01). The rotarod staying time, as well as fore and hind-limb strides, shows a significant increase (P < 0.01), as does spontaneous activity (P < 0.01). Moreover, the expression levels of TH, DA, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor in SN in mice show significant increases in these two groups (P < 0.01). The content of superoxide dismutase, catalase, and glutathione peroxidase indicates significant increases in the low, moderate, and high-dose ECH groups (P < 0.01), and the content of MDA was reduced (P < 0.01). In the high-dose ECH group, the expression of interleukin (IL) 6 and tumor necrosis factor-α is significantly reduced (P < 0.01), while the expression of IL-10 shows a marked increase (P < 0.01) alongside a decrease in the expression of α-synuclein (P < 0.01). Conclusion Echinacoside improves neurobehavioral symptoms in PD mice and significantly increases the expression of TH and DA. The neuroprotective effect potentially correlates with anti-inflammation and anti-oxidation actions, promotes the expression of nerve growth factor, and reduces the accumulation of α-synuclein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.