This paper presents a study of the influence of cutting conditions (cutting velocity, feed, cutting depth and lubrication) on turning TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) titanium alloy. Taguchi methodology design was adopt for carrying out experiments. Turning process parameters such as cutting speed, feed rate and depth of cut were varied to study their effect on process responses such as cutting force (Ft), surface roughness (Ra) and temperature on cutting zones (T). Minimum quantity lubrication (MQL) technology was adopt to increase the lubricating and cooling effect. Meanwhile, CVD diamond coating was deposited on the cemented carbide insert to reduce its friction with workpiece and increase its wear resistance. From the analysis of orthogonal tests, depth of cut contributes the most for the main cutting force and cutting temperature, while feed rate had the most significant effect on surface roughness on the workpiece. MQL can reduce the cutting temperature at the cutting zones, especially for the uncoated cutting inserts whose temperature decreases by an average of 60~80°C. The cutting force, surface roughness and cutting temperature of CVD diamond coated inserts were all higher than those of uncoated tools, especially with MQL lubrication. Considering the cutting efficiency and cost, the optimal parameters in the turning process of TC11 for minimizing the cutting force, surface roughness and cutting temperature are obtained as Vc=115m/min, f=0.08mm, ap=0.5mm under MQL lubricating with uncoated cemented carbide as the cutting tool.
The tribo-map of typical CVD diamond film exhibiting the interaction between the wear rate, friction coefficient and friction conditions would help optimize the working parameters of CVD diamond film coated tools and wear-resistance components. The tribological behaviors of CVD diamond films sliding against Si3N4 balls were studied by conducting a group of tests on the ball-on-plate type reciprocating friction tester under several sliding speeds and normal loads in the ambient air. The examined MCD films and NCD films were deposited on square flat WC-Co substrates. The worn surfaces on the diamond films were observed by SEM and the wear volumes of diamond films were measured by surface profilometer. The results indicated that the influences of the sliding speeds and normal loads on the friction coefficients for both MCD films and NCD films were obvious. When the load was 6 N, MCD film obtained the lowest friction coefficient of 0.11 at the sliding velocity of 0.2 m/s, while for NCD film the minimum value was 0.07 as the sliding speed was 0.13 m/s. The wear rate of the MCD film decreased as the load improved, while for the NCD film, the tendency was just the opposite. The influence of sliding speed on the wear rate of the MCD films was not distinct, while for the NCD films, the sliding velocity greatly affects their wear rate. The wear rates of most NCD films were around 0.2×10-7 mm3/Nm, while those of the MCD films fluctuated from 0.6×10-7~1.6×10-7 mm3/Nm. To elucidate the effect of operating environment on wear mechanism of diamond/ Si3N4 tribo-pair, the tribo-map was developed.
In the present investigation, both micro-crystalline and nanocrystalline diamond (MCD and NCD) films are fabricated, which are characterized by FESEM (Field Emission Scanning Electron Microscopy), surface profilemeter, Raman spectroscopy and Rockwell hardness tester. Moreover, under the dry environment, the frictional behavior of both the films sliding against commonly-used materials in the metal drawing industry is studied on a ball-on-plate rotational frictional tester, including the stainless steel, low-carbon steel, high-carbon steel and copper, demonstrating that the frictional coefficients between NCD films and all these materials are relatively smaller. Furthermore, the wear rates of both the films, which are hardly measured in the ball-on-plate friction tests, are evaluated using a home-made inner-hole line drawing apparatus, with both the diamond films deposited on the inner-hole surfaces and the low-carbon steel wires as the counterparts. Inversely, the NCD films present higher wear rates than the MCD ones, which can be attributed to the deteriorative film purity and adhesion.
The CVD diamond/diamond-like carbon composite film is fabricated on the WC-Co substrate by depositing a layer of Diamond-like Carbon film on the surface of conventional Micro- or Nano-crystalline diamond film. The hot filament chemical vapor deposition (HFCVD) method and vacuum arc discharge with a graphite cathode are adopted respectively to deposit the MCD/NCD and DLC films. A variety of characterization techniques, including filed emission scanning electron microscope (FE-SEM) and Raman spectroscopy are employed to investigate the surface morphology and atomic bonding state of as-deposited MCD/DLC and NCD/DLC composite film. The results show that both MCD/DLC and NCD/DLC composite films present similar surface morphology with the MCD and NCD films, except for scattering a considerable amount of small-sized diamond crystallites among the grain boundary area. The atomic-bonding state of as-deposited MCD/DLC and NCD/DLC composite films is determined by the top-layered DLC film, which is mainly consisted of amorphous carbon phase and no discernible sp3 characteristic peak can be observed from their Raman spectrum. Furthermore, the tribological properties of as-deposited MCD/DLC and NCD/DLC composite films is examined using a ball-on-plate reciprocating friction tester under both dry sliding and water-lubricating conditions, comparing with conventional DLC, MCD and NCD films. Silicon nitride balls are used as counterpart materials. For the CVD diamond/DLC composite films, the self-lubricating effect of top-layered DLC film is beneficial for suppressing the initial friction peak, as well as shortening the run-in period. The average friction coefficients of MCD/DLC and NCD/DLC composite films during stable sliding period are 0.07 and 0.10 respectively in dry sliding; while under water-lubricating condition, they further decreases to 0.03 and 0.07.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.