Background Wuhan was the first epicentre of COVID-19 in the world, accounting for 80% of cases in China during the first wave. We aimed to assess household transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and risk factors associated with infectivity and susceptibility to infection in Wuhan.Methods This retrospective cohort study included the households of all laboratory-confirmed or clinically confirmed COVID-19 cases and laboratory-confirmed asymptomatic SARS-CoV-2 infections identified by the Wuhan Center for Disease Control and Prevention between Dec 2, 2019, and April 18, 2020. We defined households as groups of family members and close relatives who did not necessarily live at the same address and considered households that shared common contacts as epidemiologically linked. We used a statistical transmission model to estimate household secondary attack rates and to quantify risk factors associated with infectivity and susceptibility to infection, accounting for individual-level exposure history. We assessed how intervention policies affected the household reproductive number, defined as the mean number of household contacts a case can infect. Findings 27 101 households with 29 578 primary cases and 57 581 household contacts were identified. The secondary attack rate estimated with the transmission model was 15•6% (95% CI 15•2-16•0), assuming a mean incubation period of 5 days and a maximum infectious period of 22 days. Individuals aged 60 years or older were at a higher risk of infection with SARS-CoV-2 than all other age groups. Infants aged 0-1 years were significantly more likely to be infected than children aged 2-5 years (odds ratio [OR] 2•20, 95% CI 1•40-3•44) and children aged 6-12 years (1•53, 1•01-2•34). Given the same exposure time, children and adolescents younger than 20 years of age were more likely to infect others than were adults aged 60 years or older (1•58, 1•28-1•95). Asymptomatic individuals were much less likely to infect others than were symptomatic cases (0•21, 0•14-0•31). Symptomatic cases were more likely to infect others before symptom onset than after (1•42, 1•30-1•55). After mass isolation of cases, quarantine of household contacts, and restriction of movement policies were implemented, household reproductive numbers declined by 52% among primary cases (from 0•25 [95% CI 0•24-0•26] to 0•12 [0•10-0•13]) and by 63% among secondary cases (from 0•17 [0•16-0•18] to 0•063 [0•057-0•070]).Interpretation Within households, children and adolescents were less susceptible to SARS-CoV-2 infection but were more infectious than older individuals. Presymptomatic cases were more infectious and individuals with asymptomatic infection less infectious than symptomatic cases. These findings have implications for devising interventions for blocking household transmission of SARS-CoV-2, such as timely vaccination of eligible children once resources become available.
Nur77 is an orphan receptor. Although Nur77 affects cell proliferation and apoptosis through its capability of binding to a variety of response elements and regulating their transactivation activities, the intrinsic function of Nur77 is not yet fully understood; in particular, its regulation of apoptosis and proliferation has been characterized as cell type-dependent and agent context-dependent. In this study, Nur77 can be seen to regulate apoptosis via its expression and translocation, rather than its transactivation activity in gastric cancer cells. Nur77 was constitutively expressed in BGC-823 cells. The tetradecanoylphorbol-1,3-acetate (TPA) treatment not only resulted in up-regulation of the Nur77 mRNA level, but also led to translocation of Nur77 protein from the nucleus to the mitochondria, and caused the release of cytochrome c. This TPA-induced translocation of Nur77 was in association with the initiation of apoptosis in gastric cancer cells. Although all-trans retinoic acid (ATRA) could not induce apoptosis in BGC-823 cells due to failure of stimulating Nur77 translocation, expression of Nur77 in the nucleus was required for cell growth inhibition by ATRA. Transfection of antisense Nur77 receptor into BGC-823 cells resulted in resistance of cell growth against ATRA inhibition, and the cells were still arrested in the S phase. Furthermore, the action of Nur77 in TPA-induced apoptosis was mediated through a protein kinase C signaling pathway, while mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways were responsible for the regulation of Nur77 mRNA expression. Taken together, the data revealed the dual functioning mechanisms of Nur77 in gastric cancer cells in response to TPA and ATRA.
Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we report that EphB1 receptor forward signaling in the spinal cord is critical to the development of bone cancer pain and morphine tolerance in treating bone cancer pain. Tibia bone cavity tumor cell implantation (TCI) produces bone cancer-related thermal hyperalgesia, mechanical allodynia, spontaneous and movement-evoked pain behaviors, and bone destruction. Production and persistence of these pain behaviors are well correlated with TCI-induced upregulation of EphB1 receptor and its ligand ephrinB2 in the dorsal horn and primary sensory neurons. Spinal administration of an EphB1 receptor blocking reagent EphB2-Fc prevents and reverses bone cancer pain behaviors and the associated induction of c-Fos and activation of astrocytes and microglial cells, NR1 and NR2B receptors, Src within the N-methyl-D-aspartate receptor complex, and the subsequent Ca 2þ -dependent signals. The exogenous ligand ephrinB2-Fc upregulates level of phosphorylation of NR1 and NR2B receptors depending on the activation of EphB1 receptor. Spinal administration of EphB2-Fc and ephrinB2-Fc induces downregulation of EphB1 and ephrinB2, respectively, accompanied with increased activity of matrix metalloproteinase (MMP)-2/9. Blocking MMP-2 or MMP-9 reverses EphB1-Fc treatment-induced downregulation of EphB1 receptor. In addition, spinal blocking or targeted mutation of EphB1 receptor reverses morphine tolerance in treating bone cancer pain in rats and defensive pain in mice. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest a potential target for treating bone cancer pain and improving analgesic effect of morphine clinically. Cancer Res; 71(13); 4392-402. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.