Abstract-In this paper, we propose a preamble (PA) collision resolution (PACR) scheme based on multiple timing advance (TA) values captured via tagged PAs. In the proposed PACR scheme, tags are embedded in random access (RA) PAs and multiple TA values are captured for a single detected PA during a tag detection procedure. The proposed PACR scheme significantly improves RA success probability for stationary machine nodes since the nodes using collided PAs can successfully complete the corresponding RAs using exclusive data resource blocks.
Cognitive radio is an intelligent radio network that has advancement over traditional radio. The difference between the traditional radio and the cognitive radio is that all the unused frequency spectrum can be utilized to the best of available resources in the cognitive radio unlike the traditional radio. The core technology of cognitive radio is spectrum sensing, in which secondary users (SUs) opportunistically access the spectrum while avoiding interference to primary user (PU) channels. Various aspects of the spectrum sensing have been studied from the perspective of cognitive radio. Cooperative spectrum sensing (CSS) technique provides a promising performance, compared with individual sensing techniques. However, the existence of malicious users (MUs) highly degrades the performance of cognitive radio network (CRN) by sending falsified results to a fusion center (FC). In this paper, we propose a machine learning algorithm based on support vector machine (SVM) to classify legitimate SUs and MUs in the CRN. The proposed SVM-based algorithm is used for both classification and regression. It clearly classifies legitimate SUs and MUs by drawing a hyperplane on the base of maximal margin. After successful classification, the sensing results from the legitimate SUs are combined at the FC by utilizing Dempster-Shafer (DS) evidence theory. The effectiveness of the proposed SVM-based classification algorithm is demonstrated through simulations, compared with existing schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.