Carbapenems are broad-spectrum antibiotics widely used for the treatment of human infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, emerging carbapenemase-producing Enterobacterales (CPE) are rising as a public threat to human and animal health. We screened clinical bacterial isolates from 241 dogs and 18 cats hospitalized at Veterinary Medical Teaching Hospital, Seoul National University, from 2018 to 2020 for carbapenemase production. In our study, 5 strains of metallo-β-lactamase NDM-5-producing Escherichia coli and Klebsiella pneumoniae were isolated from 4 different dogs. Multilocus sequence typing (MLST) results showed that all E. coli strains were ST410 and all K. pneumoniae strains were ST378. Whole genome analysis of the plasmid showed that blaNDM-5 is carried on a IncX3 plasmid, showing a high concordance rate with plasmids detected worldwide in human and animal isolates. The blaNDM gene was associated with the bleMBL gene and the ISAba125 element, truncated with the IS5 element. The results of this study show that CPE has already become as a threat to both animals and humans in our society, posing the necessity to solve it in terms of "One Health". Therefore, preventive strategies should be developed to prevent the spread of CPE in animal and human societies.
Pseudomonas aeruginosa is a common bacterium in nosocomial infection. The biofilm-forming ability and antimicrobial resistance make P. aeruginosa biofilm infection refractory to patients requiring hospitalization, especially patients in the intensive care unit. Therefore, many alternative compounds have been developed. A newly synthesized peptide, RP557, derived from human cathelicidin LL-37, was evaluated for its antimicrobial and antibiofilm effect toward carbapenem-resistant P. aeruginosa (CRPA). The results showed that regardless of the resistance to carbapenems, the minimal inhibition concentrations of RP557 and LL-37 against P. aeruginosa were 32 µg/mL and 256 µg/mL, respectively. Both RP557 and LL-37 significantly reduced the P. aeruginosa biofilm mass at subMICs, while subMICs of carbapenems induced biofilm formation. RP557 could also remove approximately 50% of the mature biofilm at a concentration of 64 µg/mL, while 256 µg/mL LL-37 was needed to remove it. A quarter MIC of RP557 and LL-37 was used together with carbapenems (ertapenem, imipenem, and meropenem). The results show that both RP-557 and LL-37 might increase the susceptibility to CRPA by 4–16 times. Significant gene expression level changes were observed in RP557- or LL-37-treated CRPA. Confocal images showed that biofilm structures and biofilm cell viability were significantly reduced in the LL-37- or RP557-treated groups. Therefore, RP557 and its structural origin, LL-37, could be potential treatments for carbapenem-resistant P. aeruginosa infection, especially for chronic biofilm infection. IMPORTANCE Pseudomonas aeruginosa is one of the major pathogens of nosocomial infection. Combined its biofilm-forming ability with carbapenem-resistance, it is hard to handle P. aeruginosa infection, especially for patients requiring hospitalization. Antimicrobial peptide is a type of potential compound for bacterial infection treatment. Among these, RP557 was found effective in inhibiting biofilm previously. By assessing its effect on both carbapenem-resistant P. aeruginosa planktonic cells and biofilm, our results offered a potential treatment for carbapenem-resistant P. aeruginosa infection. It could be helpful to treat severe nosocomial infection related to carbapenem-resistant bacteria and increase the patients’ survival rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.