Classical swine fever (CSF) causes severe disease in pigs, characterized by hemorrhage, fever, and leucopenia. A primary target of the virus is endothelial cells, where a pro-inflammatory and pro-coagulant response occurs with downregulation of gap junctional communication; these changes establish a basis for haemostatic imbalance. The aim of this study was to gain an understanding of the effect of classical swine fever virus (CSFV) on endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability. Porcine aortic endothelial cells (PAECs) were infected with CSFV at different multiplicity of infection (M.O.I.) for 48 h. Downregulation of the transcription and translation levels of eNOS was detected by semi-quantitative RT-PCR, immunoconfocal microscopy, and western blotting. This was accompanied by a reduction in NO bioavailability and attenuation of angiogenesis. Without influence from the progeny virus titer, the decrease in eNOS protein was reversed by an ERK inhibitor (PD98059) and two PI3/Akt inhibitors (LY294002 and wortmannin). In addition, we found that the transcription factors AP1, Sp1, and GATA1/2 may be involved in the downregulation of eNOS promoter activity. In conclusion, infection of PAECs with CSFV attenuated the expression of eNOS and reduced NO bioavailability through activation of the ERK and PI3/Akt pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.