The deterioration of the physical and mechanical properties of tonalites subjected to freeze-thaw cycling under three different temperature ranges was explored using several experimental techniques. Uniaxial compression and three-point bending tests were conducted on untreated and treated tonalite specimens. Clear decreases in uniaxial compressive strength (UCS), Young’s modulus, and fracture toughness were observed in tonalite specimens with frost damage. Although Young’s modulus and fracture toughness did not show clear decreases as the minimum temperature of the freeze-thaw cycle decreased from −30°C to −50°C, the UCS decreased almost linearly. The macromechanical characteristics of the tonalites can be explained by changes in mineral content and microstructure. The intensity of X-ray diffraction (XRD) peaks of minerals in tonalites that had not been freeze-thaw cycled were approximately 10 to 20 times higher than the peaks for the specimens subjected to freeze-thaw cycling, implying that the internal structure of tonalite is less compact after frost damage. The microstructures of the tonalite specimens were also examined using scanning electron microscopy (SEM). Increased amounts of fragmentation and breaking of structural planes were observed as the minimum temperature of the freeze-thaw cycle decreased.
The flat-joint model, which constructs round particles as polygons, can suppress rotation after breakage between particles and simulate more larger compression and tension ratios than the linear parallel-bond model. The flat-joint contact model was chosen for this study to calibrate the rock for 3D experiments. In the unit experiments, the triaxial unit was loaded with flexible boundaries, and the influence of each microscopic parameter on the significance magnitude of the macroscopic parameters (modulus of elasticity E, Poisson’s ratio ν, uniaxial compressive strength UCS, crack initiation strength σci, internal friction angle φ and uniaxial tensile strength TS) was analysed by ANOVA (Analysis of Variance) in an orthogonal experimental design. Among them, Eƒ, kƒ has a significant effect on E; Cƒ and kƒ have a significant effect on ν; Cƒ, σƒ and kƒ have a significant effect on UCS; Cƒ; σƒ and Eƒ have a significant effect on TS; Rsd has a significant effect on σci; and φf, Eƒ, kƒ, μƒ, and σƒ have a significant effect on φ. Regressions were then carried out to establish the equations for calculating the macroscopic parameters of the rock material so that the three-dimensional microscopic parameters of the PFC can be quantitatively analysed and calculated. The correctness of the establishment of the macroscopic equations was verified by comparing the numerical and damage patterns of uniaxial compression, Brazilian splitting, and triaxial experiments with those of numerical simulation units in the chamber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.