Oxidative stress is a reflection of the imbalance between the production of reactive oxygen species (ROS) and the scavenging capacity of the antioxidant system. Excessive ROS, generated from various endogenous oxidative biochemical enzymes, interferes with the normal function of liver-specific cells and presumably plays a role in the pathogenesis of liver fibrosis. Once exposed to harmful stimuli, Kupffer cells (KC) are the main effectors responsible for the generation of ROS, which consequently affect hepatic stellate cells (HSC) and hepatocytes. ROS-activated HSC undergo a phenotypic switch and deposit an excessive amount of extracellular matrix that alters the normal liver architecture and negatively affects liver function. Additionally, ROS stimulate necrosis and apoptosis of hepatocytes, which causes liver injury and leads to the progression of end-stage liver disease. In this review, we overview the role of ROS in liver fibrosis and discuss the promising therapeutic interventions related to oxidative stress. Most importantly, novel drugs that directly target the molecular pathways responsible for ROS generation, namely, mitochondrial dysfunction inhibitors, endoplasmic reticulum stress inhibitors, NADPH oxidase (NOX) inhibitors, and Toll-like receptor (TLR)-affecting agents, are reviewed in detail. In addition, challenges for targeting oxidative stress in the management of liver fibrosis are discussed.
Galunisertib is a drug that deserves to be further investigated for the treatment of liver fibrosis. Inhibition of SMAD2 phosphorylation is probably a central mechanism of action. In addition, blocking the production and maturation of collagens and promoting their degradation are related to the antifibrotic action of galunisertib.
Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We therefore developed an ex vivo model using precision‐cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Postischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation, and maturation. Proliferation of PBG cells increased after 24 hours of oxygenated incubation, reaching a peak after 72 hours. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (homeobox protein Nanog+/ sex‐determining region Y‐box 9+) to a mature (cystic fibrosis transmembrane conductance regulator+/secretin receptor+) and activated phenotype (increased expression of hypoxia‐inducible factor 1 alpha, glucose transporter 1, and vascular endothelial growth factor A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. Conclusion: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behavior of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury.
Benzene-induced erythropoietic depression has been proposed to be due to the production of toxic metabolites. Presently, the cytotoxicities of benzene metabolites, including phenol, catechol, hydroquinone, and 1,2,4-benzenetriol, to erythroid progenitor-like K562 cells were investigated. After exposure to these metabolites, K562 cells showed significant inhibition of viability and apoptotic characteristics. Each metabolite caused a significant increase in activities of caspase-3, -8, and -9, and pretreatment with caspase-3, -8, and -9 inhibitors significantly inhibited benzene metabolites-induced phosphatidylserine exposure. These metabolites also elevated expression of Fas and FasL on the cell surface. After exposure to benzene metabolites, K562 cells showed an increase in reactive oxygen species level, and pretreatment with N-acetyl-l-cysteine significantly protected against the cytotoxicity of each metabolite. Interestingly, the control K562 cells and the phenol-exposed cells aggregated together, but the cells exposed to other metabolites were scattered. Further analysis showed that hydroquione, catechol, and 1,2,4-benzenetriol induced a decrease in the cell surface sialic acid levels and an increase in the cell surface sialidase activity, but phenol did not cause any changes in sialic acid levels and sialidase activity. Consistently, an increase in expression level of sialidase Neu3 mRNA and a decrease in mRNA level of sialyltransferase ST3GAL3 gene were detected in hydroquione-, catechol-, or 1,2,4-benzenetriol-treated cells, but no change in mRNA levels of two genes were found in phenol-treated cells. In conclusion, these benzene metabolites could induce apoptosis of K562 cells mainly through caspase-8-dependent pathway and ROS production, and sialic acid metabolism might play a role in the apoptotic process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.