Because of lack of flat land, more and more deep-cut and high-fill engineering are being carried out in mountainous areas. The original geological formations are greatly changed by ground leveling. Therefore, it is very important to analyze the seismic parameters before and after ground leveling. In this paper, the seismic motion parameters before and after ground leveling of deep-cut and high-fill engineering are compared by the establishment of seismic response analysis model in different geological conditions. The results show that the peak acceleration and the characteristic period of the response spectrum are lower than those before excavation; But the results change when filling on the foundation of bedrock or the foundation where original cover soil layers have already existed. The peak acceleration and characteristic period of acceleration response spectrum increase more than those ground motion parameters before filling in this site. Besides, when filling in the bedrock site, the peak acceleration magnification tended to decrease, with the increase of the filling thickness, and the characteristic period tended to increase. Therefore, seismic ground motion parameters after ground leveling can be lower than those before ground leveling in excavation area, conversely, ground motion parameters are higher in fill area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.