The amino acid compositions, secondary structure, and self-assembly of oat protein isolate (OPI), which was purified from the high-protein Chinese oat, have been investigated by using a combination of amino acid analysis, Fourier transform infrared spectroscopy (FTIR), and tapping mode atomic force microscopy (TP-AFM). OPI, with molecular weights ranging from 14.0 kDa to 66.0 kDa, was rich in essential amino acids and contained 24.7% glutamic acid and 8.1% leucine. The amino acid contents of OPI are 4.5-8.7 times higher than those of oat flour. The secondary structures of OPI have been quantified by the deconvolution of the amide I band of the FTIR spectrum of OPI, which were found to contain approximately 7% beta-turn, 19% alpha-helix, and 74% beta-sheet. Tapping mode AFM results further suggest that the oat protein isolate has two major types of shapes, ellipsoidal and disk-like. At protein concentrations below 0.5 mg/mL, most of the OPI molecules are in the isolated form. However, when the concentration of OPI reaches 1.0 mg/mL, some of the OPI molecules self-assembled into large and heterogeneous protein aggregates.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Background. Stomach adenocarcinoma (STAD) is a common malignancy worldwide with poor prognosis. Therefore, it is important to identify a valuable prognostic biomarker for STAD. The aim of present study was to identify novel prognostic biomarkers for STAD and evaluate the potential role of hub genes in STAD. Methods. Gene Expression Profiling Interactive Analysis (GEPIA) and Cancer RNA-Seq Nexus were performed to identify differentially expressed genes (DEGs). Subsequently, hub genes were selected by a Venn diagram, and the expression of key genes was confirmed by UALCAN database. Furthermore, survival analysis of these hub genes was performed using Oncolnc and Human Protein Atlas (HPA) database. Gene alteration status of hub genes was assessed by cBioPortal. Finally, we investigated the association between hub genes and immune cell infiltration in STAD through the Tumor Immune Estimation Resource (TIMER) and GEPIA database. Results. Three common hub genes were obtained, including 2 downregulated DEGs (ABCA8 and FABP4) and one upregulated DEG (SLC52A3). Furthermore, increased expression of ABCA8 and FABP4 and decreased expression of SLC52A3 were correlated with poor prognosis. Meanwhile, three hub genes showed genetic alterations in various datasets of STAD. Finally, our results showed that ABCA8 and FABP4 displayed a positive correlation with immune infiltration, especially in M2 macrophages. Conclusions. The results of this study suggest that ABCA8 and FABP4 may be used as prognostic biomarkers and correlated with immune infiltration in STAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.