To mitigate the negative environmental effects of the overuse of conventional materials—such as cement—in soil improvement, sustainable engineering techniques need to be applied. The use of biopolymers as an alternative, environmentally friendly solution has received a great deal of attention recently. The application of lignin, a sustainable and ecofriendly biobased adhesive, to enhance soil mechanical properties has been investigated. The changes to engineering properties of lignin-infused soil relative to a lignin addition to soil at 0.5, 1, and 3.0 wt.% (including Atterberg limits, unconfined compression strength, consolidated undrained triaxial characteristics, and mechanical properties under wetting and drying cycles that mimic atmospheric conditions) have been studied. Our findings reveal that the soil’s physical and strength characteristics, including unconfined compressive strength and soil cohesion, were improved by adding lignin through the aggregated soil particle process. While the internal friction angle of the soil was slightly decreased, the lignin additive significantly increased soil cohesion; the addition of 3% lignin to the soil doubled the soil’s compressive strength and cohesion. Lignin-treated samples experienced less strength loss during wetting and drying cycles. After six repeated wetting and drying cycles, the strength of the 3% lignin-treated sample was twice that of the untreated sample. Soil treated with 3% lignin displayed the highest erosion resistance and minimal soil mass loss of ca. 10% under emulated atmospheric conditions. This study offers useful insights into the utilization of lignin biopolymer in practical engineering applications, such as road stabilization, slope reinforcement, and erosion prevention.
Settlement of a relatively small magnitude occurs in box structures supported by pile foundations. However, if cavities are generated under the box structure, ground settlement can be accelerated by surrounding soil entering the cavities. In order for the structure to maintain stability for a long period of time, sustainable development to maintain the stability of the building must be continued. Preventing rapid ground settlement can lead to long-term structural stability and prevent the occurrence of life-threatening damage, thereby helping to maintain and build a sustainable urban infrastructure. Thus, in this study, a soil flow protector (SFP) that can be easily installed on the sides of the structure was developed to mitigate the aforementioned problem. Field tests and numerical analysis were performed to investigate the effect of SFP installation on structural stability and settlement reduction. After performing field experiments, it was found that SFP installation could reduce ground settlement and ground horizontal displacement. Moreover, for a 79.9-mm settlement, the safety factor was 1.315, which remained stable even when the settlement reached 345 mm. Hence, the developed SFP can be used to reduce soft ground settlement affecting box structures supported by pile foundations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.