Diabetic kidney disease (DKD) has been the leading cause of chronic kidney disease for over 20 years. Yet, over these two decades, the clinical approach to this condition has not much improved beyond the administration of glucose-lowering agents, renin-angiotensin-aldosterone system blockers for blood pressure control, and lipid-lowering agents. The proportion of diabetic patients who develop DKD and progress to end-stage renal disease has remained nearly the same. This unmet need for DKD treatment is caused by the complex pathophysiology of DKD, and the difficulty of translating treatment from bench to bed, which further adds to the growing argument that DKD is not a homogeneous disease. To better capture the full spectrum of DKD in our design of treatment regimens, we need improved diagnostic tools that can better distinguish the subgroups within the condition. For instance, DKD is typically placed in the broad category of a non-inflammatory kidney disease. However, genome-wide transcriptome analysis studies consistently indicate the inflammatory signaling pathway activation in DKD. This review will utilize human data in discussing the potential for redefining the role of inflammation in DKD. We also comment on the therapeutic potential of targeted anti-inflammatory therapy for DKD.
Aims/hypothesis The aim of this study was to quantify the relative contributions of increased insulin secretion rate (ISR) and decreased insulin clearance rate (ICR) in the compensatory hyperinsulinaemia characteristic of insulin-resistant individuals without diabetes. Methods Obese (BMI ≥30 kg/m2) individuals without diabetes (n = 91) were identified from a registry of volunteers. Volunteers underwent the following measurements: oral glucose tolerance; insulin resistance (steady-state plasma glucose [SSPG] concentration during the insulin suppression test [IST]); ISR (using the graded glucose infusion test [GGIT]); and ICR (using the IST and GGIT). Participants were stratified into tertiles based on SSPG concentration: SSPG-1(insulin-sensitive); SSPG-2 (intermediate); and SSPG-3 (insulin-resistant). Results There were no differences in BMI and waist circumference among the SSPG tertiles. Serum alanine aminotransferase concentrations were higher in the SSPG-2 and SSPG-3 groups compared with the SSPG-1 group (p = 0.02). Following an oral glucose challenge, there was a progressive increase in the total integrated insulin response from the most insulin-sensitive to the most insulin-resistant tertiles (p < 0.001). Following intravenous glucose, the SSPG-3 group had significantly greater integrated glucose (median [interquartile range], 32.9 [30.8–36.3] mmol/l × h) and insulin responses (1711 [1476–2223] mmol/l × h) compared with the SSPG-1 group (30.3 [28.8–32.9] mmol/l × h, p = 0.04, and 851 [600–1057] pmol/l × h, p < 0.001, respectively). Furthermore, only the SSPG-3 group had significant changes in both ISR and ICR (p < 0.001). In the SSPG-2 group, only the ICR was significantly decreased compared with the SSPG-1 group. Therefore, ICR progressively declined during the IST with increasing insulin resistance (SSPG-1, 0.48 [0.41–0.59]; SSPG-2, 0.43 [0.39–0.50]; SSPG-3, 0.34 [0.31–0.40]). Conclusions/interpretation While both increases in ISR and decreases in ICR compensate for insulin resistance, decreases in ICR may provide the first adaptation to decreased insulin sensitivity.
Asymptomatic hyperuricemia is frequently observed in patients with kidney disease. Although a substantial number of epidemiologic studies have suggested that an elevated uric acid level plays a causative role in the development and progression of kidney disease, whether hyperuricemia is simply a result of decreased renal excretion of uric acid or is a contributor to kidney disease remains a matter of debate. Over the last two decades, multiple experimental studies have expanded the knowledge of the biological effects of uric acid beyond its role in gout. In particular, uric acid induces immune system activation and alters the characteristics of resident kidney cells, such as tubular epithelial cells, endothelial cells, and vascular smooth muscle cells, toward a proinflammatory and profibrotic state. These findings have led to an increased awareness of uric acid as a potential and modifiable risk factor in kidney disease. Here, we discuss the effects of uric acid on the immune system and subsequently review the effects of uric acid on the kidneys mainly in the context of inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.