In this paper, a novel image watermarking method is proposed which is based on discrete wave transformation (DWT), Hessenberg decomposition (HD), and singular value decomposition (SVD). First, in the embedding process, the host image is decomposed into a number of sub-bands through multilevel DWT, and the resulting coefficients of which are then used as the input for HD. The watermark is operated on the SVD at the same time. The watermark is finally embedded into the host image by the scaling factor. Fruit fly optimization algorithm, one of the natural-inspired optimization algorithms is devoted to find the scaling factor through the proposed objective evaluation function. The proposed method is compared to other research works under various spoof attacks, such as the filter, noise, JPEG compression, JPEG2000 compression, and sharpening attacks. The experimental results show that the proposed image watermarking method has a good trade-off between robustness and invisibility even for the watermarks with multiple sizes.INDEX TERMS Image watermarking, discrete wave transformation, singular value decomposition, Hessenberg decomposition, fruit fly optimization algorithm.
Emotion classification based on brain–computer interface (BCI) systems is an appealing research topic. Recently, deep learning has been employed for the emotion classifications of BCI systems and compared to traditional classification methods improved results have been obtained. In this paper, a novel deep neural network is proposed for emotion classification using EEG systems, which combines the Convolutional Neural Network (CNN), Sparse Autoencoder (SAE), and Deep Neural Network (DNN) together. In the proposed network, the features extracted by the CNN are first sent to SAE for encoding and decoding. Then the data with reduced redundancy are used as the input features of a DNN for classification task. The public datasets of DEAP and SEED are used for testing. Experimental results show that the proposed network is more effective than conventional CNN methods on the emotion recognitions. For the DEAP dataset, the highest recognition accuracies of 89.49% and 92.86% are achieved for valence and arousal, respectively. For the SEED dataset, however, the best recognition accuracy reaches 96.77%. By combining the CNN, SAE, and DNN and training them separately, the proposed network is shown as an efficient method with a faster convergence than the conventional CNN.
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
This work explores the sensitivity of electroencephalographic-based biometric recognition to the type of tasks required by subjects to perform while their brain activity is being recorded. A novel wavelet-based feature is used to extract identity information from a database of 109 subjects who performed four different motor movement/ imagery tasks while their data were recorded. Training and test of the system was performed using a number of experimental protocols to establish if training with one type of task and tested with another would significantly affect the recognition performance. Also, experiments were conducted to evaluate the performance when a mixture of data from different tasks was used for training. The results suggest that performance is not significantly affected when there is a mismatch between training and test tasks. Furthermore, as the amount of data used for training is increased using a combination of data from several tasks, the performance can be improved. These results indicate that a more flexible approach may be incorporated in data collection for EEG-based biometric systems which could facilitate their deployment and improved performance.
This work reviews the state-of-the-art neuromarkers development for the prognosis of Alzheimer's diseases (AD) and mild cognitive impairment (MCI). The first part of this study is devoted to reviewing the recently emerged machine learning (ML) algorithms based on electroencephalography (EEG) and magnetoencephalography (MEG) modalities. In particular, the methods are categorized by different types of neuromarkers. The second part of the review is dedicated to a series of investigations that further highlight the differences between these two modalities. Firstly, several source reconstruction methods are reviewed and their source-level performances explored, followed by an objective comparison between EEG and MEG from multiple perspectives. Finally, a number of the most recent reports on classification of MCI/AD during resting state using EEG/MEG are documented to show the up-to-date performance for this wellrecognized data collecting scenario. It is noticed that the MEG modality may be particularly effective in distinguishing between subjects with MCI and healthy controls, a high classification accuracy of more than 98% was reported recently; whereas the EEG seems to be performing well in classifying AD and healthy subjects, which also reached around 98% of the accuracy. A number of influential factors have also been raised and suggested for careful considerations while evaluating the ML-based diagnosis systems in the real-world scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.