We sequenced the entire mitochondrial genome (mitogenome) of two gelechioids, Mesophleps albilinella and Dichomeris ustalella, and compared their genome organization and sequence composition to those of available gelechioid mitogenomes for an enhanced understanding of Gelechioidea genomic characteristics. We compared all available lepidopteran mitogenome arrangements, including that of M. albilinella, which is unique in Gelechioidea, to comprehend the extensiveness and mechanisms of gene rearrangement in Lepidoptera. The genomes of M. albilinella and D. ustalella are 15,274 and 15,410 bp in size, respectively, with the typical sets of mitochondrial (mt) genes. The COI gene begins with CGA (arginine) in all sequenced gelechioids, including M. albilinella and D. ustalella, reinforcing the feature as a synapomorphic trait, at least in the Gelechioidea. Each 353- and 321-bp long A + T-rich region of M. albilinella and D. ustalella contains one (D. ustalella) or two (M. albilinella) tRNA-like structures. The M. albilinella mitogenome has a unique gene arrangement among the Gelechioidea: ARNESF (the underline signifies an inverted gene) at the ND3 and ND5 junction, as opposed to the ARNSEF that is found in ancestral insects. An extensive search of available lepidopteran mitogenomes, including that of M. albilinella, turned up six rearrangements that differ from those of ancestral insects. Most of the rearrangements can be explained by the tandem duplication-random loss model, but inversion, which requires recombination, is also found in two cases, including M. albilinella. Excluding the MIQ rearrangement at the A + T-rich region and ND2 junction, which is found in nearly all Ditrysia, most of the remaining rearrangements found in Lepidoptera appear to be independently derived in that they are automorphic at several taxonomic scales, although current mitogenomic data are limited, particularly for congeneric data.
The mitochondrial genome (mitogenome) characteristics of the monotypic Lasiocampoidea are largely unknown, because only limited number of mitogenomes is available from this superfamily. In this study, we sequenced the complete mitogenome of the lappet moth, Kunugia undans (Lepidoptera: Lasiocampidae) and compared it to those of Lasiocampoidea and macroheteroceran superfamilies (59 species in six superfamilies). The 15,570-bp K. undans genome had one additional trnR that was located between trnA and trnN loci and this feature was unique in Macroheterocera, including Lasiocampoidea. Considering that the two trnR copies are located in tandem with proper secondary structures and identical anticodons, a gene duplication event might be responsible for the presence of the two tRNAs. Nearly all macroheteroceran species, excluding Lasiocampoidea, have a spacer sequence (1–34 bp) at the trnS
2 and ND1 junction, but most lasiocampid species, including K. undans, have an overlap at the trnS
2 and ND1 junction, which represents a different genomic feature in Lasiocampoidea. Nevertheless, a TTAGTAT motif, which is typically detected in Macroheterocera at the trnS
2 and ND1 junction, was also detected in all Lasiocampoidea. In summary, the general mitogenome characteristics of Lasiocampoidea did not differ greatly from the remaining macroheteroceran superfamilies, but it did exhibit some unique features.
The dragonfly
Macromia daimoji
Okumura, 1949 (Odonata: Macromiidae) has been listed as an Endangered insect in South Korea. We sequenced the complete 15,198 bp mitochondrial genome (mitogenome) of this organism, which is the first mitogenome sequence reported from the family Macromiidae. The genome includes a typical set of genes [13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes) and one non-coding region with an arrangement identical to that observed in most insect genomes. Phylogenetic analyses using concatenated sequences of the 13 PCGs and 2 rRNA genes using the Bayesian inference (BI) method placed Macromiidae, represented by
M. daimoji
, as a sister group to Libellulidae with the highest nodal support [Bayesian posterior probabilities (BPP) = 1]. Unlike conventional phylogenetic analysis, the suborders Anisozygoptera and Zygoptera formed a strong sister group (BPP =1), justifying the use of different molecular markers for phylogenetic analysis.
The spotted-wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), is an economically damaging pest that feeds on most thin-skinned fruits. It was originally native to a few Asian countries, including Korea, but is now found in North America and Europe. In this study, we sequenced portions of the mitochondrial (mt) COI and ND4 genes from a total of 195 individuals collected mainly from Korea. We then combined GenBank-registered COI sequences from all ancestral-range and introduced-range populations with our own COI data to assess the worldwide diversity, divergence, and relatedness of SWD haplotypes. A total of 139 haplotypes were obtained from the concatenated COI and ND4 sequences. Most haplotypes were confined to single localities, but 12 of them were found in more than two localities, and one haplotype (SWDCN61) was found from Korea to Canada. A dataset combining GenBank sequences with our own data identified a total of 94 worldwide COI haplotypes with a maximum sequence divergence (MSD) of 5.433% (32 bp). Although most haplotypes were found in only a single country, a few haplotypes were found commonly in China, Korea, and Japan; these occurred at a higher frequency and were often involved in introductions. A rough estimate of genetic diversity in each country showed higher diversity in ancestral distributional ranges, but the invasion over Asian countries seems to have been substantial because haplotype diversity was only 2.35 to 3.97-fold lower in the U.S.A, Canada, and Italy than that in the populations' ancestral ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.