We have previously shown that the male sex steroid testosterone inhibits slightly, but the female sex steroid 17-estradiol (E 2 ) potentiates dramatically, the capsaicin receptor-mediated current in rat dorsal root ganglion (DRG) neurons. Here, we used pharmacological methods and the nociceptive behavioral test to determine whether there is a sex difference in capsaicininduced acute pain in rats in vivo and what mechanism underlies this sex difference. Results revealed that intradermal injection of capsaicin induced a dose-dependent nocifensive response in males and females, with the dose required to produce a comparable level of nociception being approximately 3-to 4-fold higher in males than in females. In addition, females during the proestrus stage exhibited significantly greater capsaicin-induced nocifensive responses compared with the estrus stage. Moreover, the female's enhanced sensitivity to the capsaicin-induced nocifensive response was completely reversed by ovariectomy 6 weeks before capsaicin injection. It is noteworthy that intradermal coinjection of E 2 but not progesterone with capsaicin potentiated the capsaicininduced nocifensive response in ovariectomized rats. Likewise, intradermal E 2 injection dose-dependently potentiated the capsaicin-induced nocifensive response in male rats. Furthermore, potentiation by E 2 of the capsaicin-induced nocifensive response in male rats was not significantly reduced by a selective protein kinase C (PKC) inhibitor or by a selective protein kinase A (PKA) inhibitor, indicating that neither PKC nor PKA was involved in the effect of E 2 . These data demonstrate that E 2 mediates the female's enhanced sensitivity to capsaicin-induced acute pain, consistent with potentiation by E 2 of the capsaicin receptor-mediated current in rat DRG neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.