The Ca(2+)-dependent allosteric regulation of Na(+)/Ca(2+) exchanger (NCX) proteins represents Ca(2+) interaction with the cytosolic domains, CBD1 (calcium-binding domain 1) and CBD2, which is associated either with activation, inhibition or no response to regulatory Ca(2+) in a given splice variant. CBD1 contains a high affinity Ca(2+)-sensor (which is highly conserved among splice variants), whereas primary information upon Ca(2+) binding to CBD1 is modified by alternative splicing of CBD2, yielding the diverse regulatory responses to Ca(2+). To resolve the structure-dynamic determinants of splicing-dependent regulation, we tested two-domain tandem (CBD12) constructs possessing either positive, negative or no response to Ca(2+) using hydrogen-deuterium exchange MS (HDX-MS), SAXS, equilibrium 45Ca(2+) binding and stopped-flow kinetics. Taken together with previously resolved crystallographic structures of CBD12, the data revealed that Ca(2+) binding to CBD1 rigidifies the main-chain flexibility of CBD2 (but not of CBD1), whereas CBD2 stabilizes the apo-CBD1. Strikingly, the extent and strength of Ca(2+)-dependent rigidification of CBD2 is splice-variant dependent, where the main-chain rigidification spans from the Ca(2+)-binding sites of CBD1, through a helix of CBD2 (positioned at the domains' interface) up to the tip of CBD2 [>50 Å (1 Å = 0.1 nm)] or alternatively, it stops at the CBD2 helix in the splice variant exhibiting an inhibitory response to regulatory Ca(2+). These results provide a structure-dynamic basis by which alternative splicing diversifies the regulatory responses to Ca(2+) as well as controls the extent and strength of allosteric signal propagation over long distance.
Acute renal injury induces metabolic acidosis, but its specific effects on the collecting duct, the primary site for urinary ammonia secretion, the primary component of net acid excretion, are incompletely understood. We induced ischemia-reperfusion (I/R) acute renal injury in Sprague-Dawley rats by clamping the renal pedicles bilaterally for 30 min followed by reperfusion for 6 h. Control rats underwent sham surgery without renal pedicle clamping. I/R injury decreased urinary ammonia excretion significantly but did not persistently alter urine volume, Na(+), K(+), or bicarbonate excretion. Histological examination demonstrated cellular damage in the outer and inner medullary collecting duct, as well as in the proximal tubule and the thick ascending limb of the loop of Henle. A subset of collecting duct cells were damaged and/or detached from the basement membrane; these cells were present predominantly in the outer medulla and were less frequent in the inner medulla. Immunohistochemistry identified that the damaged/detached cells were A-type intercalated cells, not principal cells. Both TdT-mediated dUTP nick-end labeling (TUNEL) staining and transmission electron microscopic examination demonstrated apoptosis but not necrosis. However, immunoreactivity for caspase-3 was observed in the proximal tubule, but not in collecting duct intercalated cells, suggesting that mechanism(s) of collecting duct intercalated cell apoptosis differ from those operative in the proximal tubule. We conclude that I/R injury decreases renal ammonia excretion and is associated with intercalated cell-specific detachment and apoptosis in the outer and inner medullary collecting duct. These effects likely contribute to the metabolic acidosis frequently observed in acute renal injury.
Renal ischemic events open tight junctions and disrupt epithelial polarity. The purpose of this study was to examine the effects of ischemia–reperfusion (IR) injury on expression and distribution of the tight junction proteins, occludin and ZO-1, in the rat kidney. IR injury was induced by clamping both renal pedicles for 30 min and animals were killed at 6 h after the reperfusion. IR injury decreased blood bicarbonate level, but did not persistently alter pH, Na+, K+, or Cl−. In control kidneys, occludin immunoreactivity was intense in the tight junctions in the thick ascending limb, distal convoluted tubule, and collecting duct, moderate in the thin limbs of the loop of Henle, and was not detected in the proximal tubule, glomerulus, and blood vessels. ZO-1 was expressed in the same sites in which occludin was expressed, and additionally was also expressed in the proximal tubule, glomerulus, and vascular endothelial cells. IR kidneys exhibited damaged renal tubular epithelial cells in both proximal tubule and collecting duct segments in the outer medulla. In the collecting duct, the response of intercalated cells and principal cells differed. Following IR injury, intercalated cells, but not principal cells, lost their normal epithelial polarity and were frequently extruded into the tubule lumen. Occludin, instead of being localized to tight junctions, was localized diffusely in the cytoplasm in intercalated cells of IR kidneys. Principal cells, in contrast, were not detectably affected and neither occludin nor ZO-1 expression were altered in response to IR injury. The normal localization of ZO-1 expression to tight junction sites in both the proximal tubule and collecting duct was altered in response to IR, and, instead, ZO-1 expression was present diffusely in the cytoplasm. IR injury did not alter detectably either occludin or ZO-1 localization to the tight junction of the thick ascending limb cells. The abundance of total occludin protein by immunoblot analysis was not changed with IR injury. These results demonstrate that renal IR injury causes tight junction disruptions in both the proximal tubule and the collecting duct, and that altered distribution of the tight junction protein, occludin, may play a critical role in the collecting duct dysfunction which IR induces.
binding to CBD2 alleviates Na + -dependent inactivation. A combination of mutually exclusive (A, B) and cassette (C-F) exons in CBD2 raises functionally diverse splice variants through unknown mechanisms. Here, the effect of exons on CBDs backbone dynamics were investigated in the 2-domain tandem (CBD12) of the brain, kidney, and cardiac splice variants by using hydrogen-deuterium exchange mass spectrometry and stopped-flow techniques. Mutually exclusive exons stabilize interdomain interactions in the apoprotein, which primarily predefines the extent of responses to Ca 2+ binding. Deuterium uptake levels were up to 20% lower in the cardiac vs. the brain CBD12, reveling that elongation of the CBD2 FG loop by cassette exons rigidifies the interdomain Ca 2+ salt bridge at the 2-domain interface, which secondarily modulates the Ca 2+ -bound states. In matching splice variants, the extent of Ca 2+
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.