Because the semiconductor speed increases continuously, more usage of low-k dielectric materials to enhance the performance in Cu chips has taken place over the past few years. The implementation of copper (Cu) as an interconnect, in conjunction with the ultra-low-k materials as interlevel dielectrics or intermetal dielectrics in the fabrication of ultra-large-scale integrated circuits, has been used in the semiconductor community worldwide, especially for high-speed devices. The objective of this study is to investigate the under bump metallurgy (UBM) characterization with low-k dielectric material used in damascene Cu-integrated circuits. This paper focuses on electroless Ni/Au, Cu/Ta/Cu, and Ti/ Ni(V)/Cu/Au UBM fabrication on 8-in. damascene Cu wafers and flip chip package reliability with Pb-bearing and Pb-free solders. The interfacial diffusion study and bump shear test were carried out to evaluate the bump bonding, and the failure was analyzed with optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In order to investigate the thermal stability of the UBM system with Pb-free solder, high-temperature aging (above the melting temperature) was performed and each interface between the solder and UBM was observed with optical microscopy, SEM, and TEM, respectively. The failures observed and the modes are reported in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.