a b s t r a c tThe study of fuzzy time series has increasingly attracted much attention due to its salient capabilities of tackling uncertainty and vagueness inherent in the data collected. A variety of forecasting models including high-order models have been devoted to improving forecasting accuracy. However, the high-order forecasting approach is accompanied by the crucial problem of determining an appropriate order number. Consequently, such a deficiency was recently solved by Li and Cheng [S.-T. Li, Y.-C. Cheng, Deterministic Fuzzy time series model for forecasting enrollments, Computers and Mathematics with Applications 53 (2007) 1904-1920] using a deterministic forecasting method. In this paper, we propose a novel forecasting model to enhance forecasting functionality and allow processing of two-factor forecasting problems. In addition, this model applies fuzzy cmeans (FCM) clustering to deal with interval partitioning, which takes the nature of data points into account and produces unequal-sized intervals. Furthermore, in order to cope with the randomness of initially assigned membership degrees of FCM clustering, Monte Carlo simulations are used to justify the reliability of the proposed model. The superior accuracy of the proposed model is demonstrated by experiments comparing it to other existing models using real-world empirical data.
The study of fuzzy time series has increasingly attracted much attention due to its salient capabilities of tackling vague and incomplete data. A variety of forecasting models have devoted to improving forecasting accuracy, however, the issue of partitioning intervals has rarely been investigated. Recently, we proposed a novel deterministic forecasting model to eliminate the major overhead of determining the k-order issue in high-order models. This paper presents a continued work with focusing on handling the interval partitioning issue by applying the fuzzy c-means technology, which can take the distribution of data points into account and produce unequal-sized intervals. In addition, the forecasting model is extended to allow process twofactor problems. The accuracy superiority of the proposed model is demonstrated by conducting two empirical experiments and comparison to other existing models. The reliability of the forecasting model is further justified by using a Monte Carlo simulation and box plots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.