The chloroplast (cp) genome sequence of Bruguiera gymnorrhiza was characterized. The cp genome length was 163,795 bp in length, with a GC content of 35.3%, containing a large single copy (LSC) of 90,830 bp, a small single copy (SSC) of 20,207 bp, and a pair of inverted repeats (IRs) of 26,379 bp. The genome contained 121 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. A phylogenetic analysis using cp genomes of mangroves and ecologically associated species resolved B. gymnorrhiza in Bruguiera with B. sexangula var. rhynchopetala. This complete chloroplast sequence offers a promising tool for further species identification and evolutionary studies of Bruguiera, as well as for mangroves.
Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits. In both species, the water potentials causing 50% of total embolism were less negative in roots and leaves than they were in stems, but the water potentials causing incipient embolism (5%) were similar in roots, stems, and leaves. Stomatal closure in leaves and turgor loss in both leaves and roots occurred at water potentials only slightly less negative than the water potentials causing 5% of total embolism. Xylem anatomical traits were unrelated to vulnerability to embolism. Vulnerability segmentation may be important in limiting embolism spread into stems from more vulnerable roots and leaves. Interspecific differences in salt tolerance affected hydraulic traits from roots to leaves: the salt-secretor A. marina lost turgor at more negative water potentials and had more embolism-resistant xylem than the salt-excluder B. gymnorrhiza. Characterizing physiological thresholds of roots may help to explain recent mangrove mortality after drought and extended saltwater inundation.
Background and Aims While genome size limits the minimum sizes and maximum numbers of cells that can be packed into a given leaf volume, mature cell sizes can be substantially larger than their meristematic precursors and vary in response to abiotic conditions. Mangroves are iconic examples of how abiotic conditions can influence the evolution of plant phenotypes. Methods Here, we examined the coordination between genome size, leaf cell sizes, and cell packing densities, and leaf size in 13 mangrove species across four sites in China. Four of these species occurred at more than one site, allowing us to test the effect of climate on leaf anatomy. Results We found that genome sizes of mangroves were very small compared to other angiosperms, and, like other angiosperms, mangrove cells were always larger than the minimum size defined by genome size. Increasing mean annual temperature of a growth site led to higher packing densities of veins (Dv) and stomata (Ds) and smaller epidermal cells but had no effect on stomatal size. Contrary to other angiosperms, mangroves exhibited (1) a negative relationship between guard cell size and genome size; (2) epidermal cells that were smaller than stomata, and (3) coordination between Dv and Ds that was not mediated by epidermal cell size. Furthermore, mangrove epidermal cell sizes and packing densities covaried with leaf size. Conclusions While mangroves exhibited coordination between veins and stomata and attained a maximum theoretical stomatal conductance similar to other angiosperms, the tissue-level tradeoffs underlying these similar relationships across species and environments was markedly different, perhaps indicative of the unique structural and physiological adaptations of mangroves to their stressful environments.
The chloroplast (cp) genome sequence of Rhizophora apiculata was characterized. The cp genome length was 164,343 bp in length, containing a typical structure of a large single copy (LSC) of 93,155 bp, a small single copy (SSC) of 19,376 bp, and two inverted repeats (IRs) of 25,906 bp, with a GC content of 34.9%. There were 131 genes were annotated in the cp genome, including 85 proteincoding genes, 38 tRNA genes, and 8 rRNA genes. A phylogenetic analysis using cp genomes of mangroves and ecologically associated species resolved R. apiculata in Rhizophora with R. stylosa and R. x lamarckii. This complete chloroplast sequence offers a promising tool for further species identification and evolutionary studies of Rhizophora, as well as for mangroves.
While genome size limits the minimum sizes and maximum numbers of cells that can be packed into a given leaf volume, mature cell sizes can be substantially larger than their meristematic precursors and vary in response to abiotic conditions. Mangroves are iconic examples of how abiotic conditions can influence the evolution of plant phenotypes. Here, we examined the coordination between genome size, leaf cell sizes, and cell packing densities, and leaf size in 13 mangrove species across four sites. Four of these species occurred at more than one site, allowing us to test the effect of climate on leaf anatomy. We found that genome sizes of mangroves were very small compared to other angiosperms, and, like other angiosperms, mangrove cells were always larger than the minimum size defined by genome size. Increasing mean annual temperature of a growth site led to higher packing densities of veins (Dv) and stomata (Ds) and smaller epidermal cells but had no effect on stomatal size. Contrary to other angiosperms, mangroves exhibited (1) a negative relationship between guard cell size and genome size; (2) epidermal cells that were smaller than stomata, and (3) coordination between Dv and Ds that was not mediated by epidermal cell size. Furthermore, mangrove epidermal cell sizes and packing densities covaried with leaf size. While mangroves exhibited coordination between veins and stomata and attained a maximum theoretical stomatal conductance similar to other angiosperms, the tissue-level tradeoffs underlying these similar relationships across species and environments was markedly different, perhaps indicative of the unique structural and physiological adaptations of mangroves to their stressful environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.