In this paper, we tackle the challenging problem of point cloud completion from the perspective of feature learning. Our key observation is that to recover the underlying structures as well as surface details, given partial input, a fundamental component is a good feature representation that can capture both global structure and local geometric details. We accordingly first propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map by learning multiple latent patterns from local regions. We then integrate FSNet into a coarse-to-fine pipeline for point cloud completion. Specifically, a 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud. Next, a point cloud upsampling network is used to generate a dense point cloud from the partial input and the coarse intermediate output. To efficiently exploit local structures and enhance point distribution uniformity, we propose IFNet, a point upsampling module with a self-correction mechanism that can progressively refine details of the generated dense point cloud. We have conducted qualitative and quantitative experiments on ShapeNet, MVP, and KITTI datasets, which demonstrate that our method outperforms state-of-the-art point cloud completion approaches.
In this paper, we tackle the challenging problem of point cloud completion from the perspective of feature learning. Our key observation is that to recover the underlying structures as well as surface details given a partial input, a fundamental component is a good feature representation that can capture both global structure and local geometric details. Towards this end, we first propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map by learning multiple latent patterns from local regions. We then integrate FSNet into a coarse-to-fine pipeline for point cloud completion. Specifically, a 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud. Next, a point cloud upsampling network is used to generate dense point cloud from the partial input and the coarse intermediate output. To efficiently exploit the local structures and enhance the point distribution uniformity, we propose IFNet, a point upsampling module with self-correction mechanism that can progressively refine details of the generated dense point cloud.We conduct both qualitative and quantitative experiments on ShapeNet, MVP, and KITTI datasets, which demonstrate that our method outperforms state-of-the-art point cloud completion approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.