The prognosis and response to conventional therapies of malignant melanoma inversely correlate with disease progression. With increasing thickness, melanomas acquire metastatic potential and become inherently resistant to radiotherapy and chemotherapy. These harsh realities mandate the design of improved therapeutic modalities, especially those targeting metastases. To develop an approach to effectively treat this aggressive disease, we constructed a conditionally replication-competent adenovirus in which expression of the adenoviral E1A gene, necessary for replication, is driven by the cancer-specific promoter of progression-elevated gene-3 (PEG-3) and which simultaneously expresses mda-7/IL-24 in the E3 region of the adenovirus (Ad.PEG-E1A-mda-7), a cancer terminator virus (CTV). This CTV produces large quantities of MDA-7/IL-24 protein as a function of adenovirus replication uniquely in cancer cells. Infection of Ad.PEG-E1A-mda-7 (CTV) in normal human immortal melanocytes and human melanoma cells demonstrates cancer cell-selective adenoviral replication, mda-7/IL-24 expression, growth inhibition and apoptosis induction. Injecting Ad.PEG-E1A-mda-7 CTV into xenografts derived from MeWo human metastatic melanoma cells in athymic nude mice completely eliminated not only primary treated tumors but also distant non-treated tumors (established in the opposite flank), thereby implementing a cure. These provocative findings advocate potential therapeutic applications of this novel virus for treating patients with advanced melanomas with metastases.
Enhanced expression of the CCN family of secretory integrin-binding proteins correlates with many essential components of the cancerous state, including tumor cell adhesion, proliferation, invasion and migration. Consequently, CCN1 expression is elevated in various cancers, including breast cancer, and its expression directly correlates with poor patient prognosis. Using subtraction-hybridization, combined with induction of cancer cell terminal differentiation, we cloned SARI (suppressor of activator protein (AP)-1, regulated by interferon (IFN)), an IFN-b-inducible, potent tumor suppressor gene that exerts cancer-selective growth inhibitory effects. Forced expression of SARI using an adenovirus (Ad.SARI) inhibits AP-1 function and downregulates CCN1 expression in multiple cancer lineages, resulting in a profound inhibition in anchorage-independent cell growth and tumor cell invasion. Overexpression of SARI reduces CCN1-promoter activity through inhibition of AP-1 binding. Accordingly, SARI selectively blocks expression of the transformed state in rat embryo fibroblast cells that stably overexpress c-Jun. These results illustrate that SARI inhibits AP-1 transactivating factor binding to the ciselement of the CCN1 promoter, possibly through its interaction with c-Jun. Overall, SARI can directly inhibit CCN1-induced transformation by inhibiting the transcription of CCN1, as well as indirectly by inhibiting the expression of c-Jun (and hence blocking AP-1 activity). In these contexts, transformed cells 'addicted' to AP-1 activity are rendered susceptible to SARI-mediated inhibition of expression of the transformed phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.