The polymer network of thiol-maleimide hydrogels assembles faster than individual components can be uniformly mixed due to their fast gelation kinetics. The lack of homogeneity can result in variable cell-based assay results, resulting in batch-to-batch variability and limiting their use in predictive screening assays. Although these hydrogels are incredibly useful in tissue engineering, this network heterogeneity is a known problem in the field. We screened a variety of possible techniques to slow down the reaction speed and improve the homogeneity of these hydrogels, without sacrificing the viability and distribution of encapsulated cells. As others have reported, an electronegative crosslinker was the most effective technique to slow the reaction, but the chemical modification required is technically challenging. Of interest to a broad community, we screened buffer type, strength, and crosslinker electronegativity to find an optimal reaction speed that allows for high cell viability and small molecule diffusion, without allowing cells to settle during gelation, allowing application of these materials to the drug screening industry and tissue engineering community.
Tumors can undergo long periods of dormancy, with cancer cells entering a largely quiescent, nonproliferative state before reactivation and outgrowth. To understand the role of the extracellular matrix (ECM) in regulating tumor dormancy, we created an in vitro cell culture system with carefully controlled ECM substrates to observe entrance into and exit from dormancy with live imaging. We saw that cell populations capable of surviving entrance into long-term dormancy were heterogeneous, containing quiescent, cell cycle–arrested, and actively proliferating cells. Cell populations capable of entering dormancy formed an organized, fibrillar fibronectin matrix via αvβ3 and α5β1 integrin adhesion, ROCK-generated tension, and TGFβ2 stimulation, and cancer cell outgrowth after dormancy required MMP-2–mediated fibronectin degradation. We propose this approach as a useful, in vitro method to study factors important in regulating dormancy, and we used it here to elucidate a role for fibronectin deposition and MMP activation.
Bioengineers have built models of the tumour microenvironment (TME) in which to study cell–cell interactions, mechanisms of cancer growth and metastasis, and to test new therapies. These models allow researchers to culture cells in conditions that include features of the in vivo TME implicated in regulating cancer progression, such as extracellular matrix (ECM) stiffness, integrin binding to the ECM, immune and stromal cells, growth factor and cytokine depots, and a three-dimensional geometry more representative of the in vivo TME than tissue culture polystyrene (TCPS). These biomaterials could be particularly useful for drug screening applications to make better predictions of efficacy, offering better translation to preclinical models and clinical trials. However, it can be challenging to compare drug response reports across different biomaterial platforms in the current literature. This is, in part, a result of inconsistent reporting and improper use of drug response metrics, and vast differences in cell growth rates across a large variety of biomaterial designs. This study attempts to clarify the definitions of drug response measurements used in the field, and presents examples in which these measurements can and cannot be applied. We suggest as best practice to measure the growth rate of cells in the absence of drug, and follow our ‘decision tree’ when reporting drug response metrics. This article is part of a discussion meeting issue ‘Forces in cancer: interdisciplinary approaches in tumour mechanobiology’.
Bioengineers have designed numerous instructive brain extracellular matrix (ECM) environments with tailored and tunable protein compositions and biomechanical properties in vitro to study astrocyte reactivity during trauma and inflammation. However, a major limitation of both protein‐based and synthetic model microenvironments is that astrocytes within fail to retain their characteristic stellate morphology and quiescent state without becoming activated under “normal” culture conditions. Here, a synthetic hydrogel is introduced, which for the first time demonstrates maintenance of astrocyte quiescence and activation on demand. With this synthetic brain hydrogel, the brain‐specific integrin‐binding and matrix metalloprotease‐degradable domains of proteins are shown to control astrocyte star‐shaped morphologies, and an ECM condition that maintains astrocyte quiescence with minimal activation can be achieved. In addition, activation can be induced in a dose‐dependent manner via both defined cytokine cocktails and low molecular weight hyaluronic acid. This synthetic brain hydrogel is envisioned as a new tool to study the physiological role of astrocytes in health and disease.
Cancer spread (metastasis) is responsible for 90% of cancer-related fatalities. Informing patient treatment to prevent metastasis, or kill all cancer cells in a patient’s body before it becomes metastatic is extremely powerful. However, aggressive treatment for all non-metastatic patients is detrimental, both for quality of life concerns, and the risk of kidney or liver-related toxicity. Knowing when and where a patient has metastatic risk could revolutionize patient treatment and care. In this review, we attempt to summarize the key work of engineers and quantitative biologists in developing strategies and model systems to predict metastasis, with a particular focus on cell interactions with the extracellular matrix (ECM), as a tool to predict metastatic risk and tropism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.