Central neurocytomas (CN) are uncommon tumors of the central nervous system, most descriptions of which available in the literature are in the form of isolated case reports and small series. Owing to this rare incidence, diagnosis and management of this neoplasm remain controversial. Usually, these tumors affect lateral ventricles of young adults and display characteristic neuroimaging and histomorphologic findings. Neurocytomas often mimic oligodendrogliomas when confirmation of diagnosis rests on immunohistochemistry, ultrastructure, and genetic studies. Extraventricular neurocytomas, situated entirely within the brain parenchyma and spinal cord, have also been reported. Typically, CN are associated with a favorable outcome although cases with more aggressive clinical course with recurrences are not unknown. MIB-1 labeling index (LI) of >2% often heralds poor prognosis and tumour recurrence. Safe maximal resection is presently considered the ideal therapeutic option, with best long-term prognosis in terms of local control and survival. The role of adjuvant radiotherapy apparently seems to benefit patients with incomplete resection and in atypical neurocytoma. Utility of other therapeutic regimen, however, remains shrouded in controversy. Epidemiology, histogenesis, clinical profile, histology, neuroimaging and therapeutic modalities of neurocytomas have been comprehensively reviewed, with special emphasis on CN and extraventricular neurocytomas and their atypical counterparts.
Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.
Recently, impressive technical advancements have been made in the isolation and validation of mammary stem cells and cancer stem cells (CSCs), but the signaling pathways that regulate stem cell self-renewal are largely unknown. Further, CSCs are believed to contribute to chemo- and radioresistance. In this study, we used the MMTV-Neu-Tg mouse mammary tumor model to identify potential new strategies for eliminating CSCs. We found that both luminal progenitor and basal stem cells are susceptible to genetic and epigenetic modifications, which facilitate oncogenic transformation and tumorigenic potential. A combination of the DNMT inhibitor 5-azacytidine and the HDAC inhibitor butyrate markedly reduced CSC abundance and increased the overall survival in this mouse model. RNA-seq analysis of CSCs treated with 5-azacytidine plus butyrate provided evidence that inhibition of chromatin modifiers blocks growth-promoting signaling molecules such as RAD51AP1 and SPC25, which play key roles in DNA damage repair and kinetochore assembly. Moreover, RAD51AP1 and SPC25 were significantly overexpressed in human breast tumor tissues and were associated with reduced overall patient survival. In conclusion, our studies suggest that breast CSCs are intrinsically sensitive to genetic and epigenetic modifications and can therefore be significantly affected by epigenetic-based therapies, warranting further investigation of combined DNMT and HDAC inhibition in refractory or drug-resistant breast cancer.
Perisynaptic astroglia are critical for normal synaptic development and function. Little is known, however, about perisynaptic astroglia in the human hippocampus. When mesial temporal lobe epilepsy (MTLE) is refractory to medication, surgical removal is required for seizure quiescence. To investigate perisynaptic astroglia in human hippocampus, we recovered slices for several hours in vitro from three surgical specimens and then quickly fixed them to achieve high-quality ultrastructure. Histological samples from each case were found to have mesial temporal sclerosis with Blumcke Type 1a (mild, moderate) or 1b (severe) pathology. Quantitative analysis through serial section transmission electron microscopy in CA1 stratum radiatum revealed more synapses in the mild (10/10 µm 3 ) than the moderate (5/10 µm 3 ) or severe (1/10 µm 3 ) cases. Normal spines occurred in mild and moderate cases, but a few multisynaptic spines were all that remained in the severe case. Like adult rat hippocampus, perisynaptic astroglial processes were preferentially associated with larger synapses in the mild and moderate cases, but rarely penetrated the cluster of axonal boutons surrounding multisynaptic spines. Synapse perimeters were only partially surrounded by astroglial processes such that all synapses had some access to substances in the extracellular space, similar to adult rat hippocampus. Junctions between astroglial processes were observed more frequently in moderate than mild case, but were obscured by densely packed intermediate filaments in astroglial processes of the severe case. These findings suggest that perisynaptic astroglial processes associate with synapses in human hippocampus in a manner similar to model systems and are disrupted by severe MTLE pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.