The selection of high-producing mammalian cell lines is a crucial step in process development for the production of biopharmaceuticals. Previously, cloning by limiting dilution method was used to isolate monoclonal NS0 cells secreting high levels of humanized-C2 monoclonal antibodies. However limiting dilution method is time consuming, has low probability of monoclonality and is significantly limited by the number of clones that can be feasibly screened. In order to minimize the duration and to increase the probability of obtaining high-producing clones with high monoclonality, an automated colony picker, Clone Pix FL system was used to replace limiting dilution method. We were able to screen 1 x 10 5 clones secreting humanized monoclonal antibodies and high producer clones were selected in just 7 days. Briefly, semi-solid media was used to immobilize single cells separately and allow them to proliferate into discrete clones. The high viscosity nature of the semi-solid media retains the secreted products in the vicinity of the associated clones. Using Clone Pix FL system, all clones were screened and the producer clones with different exterior fluorescent intensities were automatically isolated. We were able to isolate rare high-producers (> 3000 FU) with frequency of as low as 0.003% of the population. A quantitative ELISA was also performed to evaluate the correlation between the fluorescence intensity of clones with its corresponding antibody productivity. Clones with fluorescence intensity of < 1000 FU showed relatively low antibody productivity compared with those greater than 1000 FU; however above this there was no correlation of production with the increase in fluorescence intensity. Hence, although the high-throughput, rapid and automated nature of Clone Pix FL system allows the screening of large number of cells in a short period of time with also an increased in the probability of obtaining rare and precious high-producing clones, downstream analysis are still vital to determine the 'actual' and stable high producer clones.
Monoclonal antibodies (mAbs) are widely used due to their exquisite specificity and once were hailed as the solution to cancer. However, when mouse mAbs are administered in humans, anti-antibody response (AAR) is frequently observed. Using humanized mAbs which are commonly developed by CDR-grafting method, the AAR is negligible, but loss of binding has also been consistently reported. Therefore, in an effort to produce humanized anti-C2 mAbs that retain binding properties but produce minimal AAR, humanized mAb has been developed by logical approach using IgBLAST. The purity and functionality of humanized mAb was confirmed by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and cell-based assays, respectively. Although the humanized mAb developed using logical approach had reduced AAR compared to mouse anti-C2 mAb in Macaca fascicularis, however the AAR was higher, compared to humanized mAb developed using deimmunization method. Hence, for the development of functional humanized mAbs with negligible AAR, it is recommended that amphipathic mouse residues, excluding those located in the CDR or Vernier zone, be chosen for humanization. However, humanization of every amphipathic mouse residues is unnecessary because with minimal judicious amino acid substitutions, an AAR response can be minimized without jeopardizing the immunoreactivity, hence making it ideal for use in human therapeutics.
Generation of high-producing clones is a perquisite for achieving recombinant protein yields suitable for biopharmaceutical production. However, in many industrially important cell lines used to produce recombinant proteins such as Chinese hamster ovary, mouse myeloma line (NS0), and hybridomas, only a minority of clones show significantly above-average productivity. Thus, in order to have a reasonable probability of finding rare high-producing clones, a large number of clones need to be screened. Limiting dilution cloning is the most commonly used method, owing to its relative simplicity and low cost. However the use of liquid media in this method makes the selection of monoclonal hybridoma and transfectoma colonies to be labor intensive and time consuming, thus significantly limiting the number of clones that can be feasibly screened. Hence, we describe the use of semisolid media to immobilize clones and a high-throughput, automated colony picker (ClonePix FL) to efficiently isolate monoclonal high-producing clones secreting monoclonal antibodies.
From our recent publications, it was found that the deimmunization method (Dharshanan et al. (2012) Sci Res Essays 7:2288–2299) should be applied for the development of humanized anti-C2 monoclonal antibody (H1C2 mAb). However, the overlapping-PCR mutagenesis procedure used to insert the variable regions into cloning vectors was laborious and time-consuming. Additionally, the expression of H1C2 mAb in NS0 cells was low in static culture vessels. Therefore H1C2 mAb was redeveloped by deimmunization method with the following modifications in order to optimize the production of H1C2 mAb. First, instead of the overlapping-PCR mutagenesis procedure, synthetic DNA coding the variable regions were used to express the mAb. Second, two expression vectors, pFUSE and UCOE, were used to express H1C2 mAb in NS0 cells and CHO cells in order to investigate the combination that gave the highest number of high producing stable clones. This will provide the highest chance of finding clones with the requisite high productivity and stability required for manufacturing. We found that transfection of UCOE in CHO cells generated the highest number of high producing stable clones. To our knowledge, this is the first time that H1C2 mAb has been expressed in CHO cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.