Electric vehicles (EV) are becoming more common mobility in the transportation sector in recent times. The dependence on oil as the source of energy for passenger vehicles has economic and political implications, and the crisis will take over as the oil reserves of the world diminish. As concerns of oil depletion and security of the oil supply remain as severe as ever, and faced with the consequences of climate change due to greenhouse gas emissions from the tail pipes of vehicles, the world today is increasingly looking at alternatives to traditional road transport technologies. EVs are seen as a promising green technology which could lead to the decarbonization of the passenger vehicle fleet and to independence from oil. There are possibilities of immense environmental benefits as well, as EVs have zero tail pipe emission and therefore are capable of curbing the pollution problems created by vehicle emission in an efficient way so they can extensively reduce the greenhouse gas emissions produced by the transportation sector as pure electric vehicles are the only vehicles with zero-emission potential. However, there are some major barriers for EVs to overcome before totally replacing ICE vehicles in the transportation sector and obtain appreciable market penetration. This review evaluates the technological aspects of the different power train systems of BEV technology and highlights those technological areas where important progress is expected by focusing on reviewing all the useful information and data available on EV architecture, electrical machines, optimization techniques, and its possibilities of future developments as green mobility. The challenges of different electric drive trains’ commercialization are discussed. The major objective is to provide an overall view of the current pure electric vehicle powertrain technology and possibilities of future green vehicle development to assist in future research in this sector.
Design is a ubiquitous human activity. Design is valued by individuals, teams, organizations, and cultures. There are patterns and recurrent phenomena across the diverse set of approaches to design and also variances. Designers can benefit from leveraging conceptual tools like process models, methods, and design principles to amplify design phenomena. There are many variant process models, methods, and principles for design. Likewise, usage of these conceptual tools differentiates in industrial contexts. We present an integrated process model, with exemplar methods and design principles that is synthesized from a review of several case studies in client based industrial design projects for product, service, and system development, professional education courses, and literature review. Concepts from several branches of design practice: (1) design thinking, (2) business design, (3) systems engineering, and (4) design engineering are integrated. A design process model, method set, and set of abstracted design principles are porposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.