Highly pathogenic avian H5N1 influenza A viruses occasionally infect humans, but currently do not transmit efficiently among humans. The viral haemagglutinin (HA) protein is a known host range determinant since it mediates virus binding to host-specific cellular receptors1–3. Here, we therefore assessed the molecular changes in HA that would allow an H5 HA-possessing virus to transmit among mammals. We identified a reassortant virus with H5 HA possessing four mutations in a 2009 pandemic H1N1 virus backbone capable of droplet transmission in a ferret model. The transmissible H5 reassortant virus preferentially recognized human-type receptors, replicated efficiently in ferrets, caused lung lesions and weight loss, but it was not highly pathogenic and did not cause mortality. These results suggest that H5 HA can convert to an HA that supports efficient viral transmission in mammals. However, we do not know whether the four mutations in the H5 HA identified in this study would render a wholly avian H5N1 virus transmissible. The genetic origin of the remaining seven viral genes may also critically contribute to transmissibility in mammals. Nevertheless, as H5N1 viruses continue to evolve and infect humans, receptor-binding variants of H5N1 viruses with pandemic potential, including avian-human reassortant viruses as tested here, may emerge. Our findings emphasize the need for pandemic preparedness for H5 HA-possessing viruses and will help individuals conducting surveillance in regions with circulating H5N1 viruses to recognize key residues that predict the pandemic potential of isolates, which will inform the development, production, and distribution of effective countermeasures.
Dicer is essential for plant, Caenorhabditis elegans, and Drosophila antiviral responses because of its role in generating small interfering RNA (siRNA) from viral genomes. We show that because of impaired miRNA production, mice with a variant Dicer1 allele (Dicer1(d/d)) were more susceptible to vesicular stomatitis virus (VSV) infection. We did not detect VSV genome-derived siRNA in wild-type cells or any alteration of interferon-mediated antiviral responses by Dicer1 deficiency. Rather, we found that host miR24 and miR93 could target viral large protein (L protein) and phosphoprotein (P protein) genes, and a lack of miR24 and miR93 was responsible for increased VSV replication in Dicer1(d/d) cells. Our data suggest that host miRNA can play a role in host interactions with viruses.
Human pandemic H1N1 2009 influenza virus rapidly infected millions worldwide and was associated with significant mortality. Antiviral drugs that inhibit influenza virus replication are the primary therapy used to diminish disease; however, there are two significant limitations to their effective use: ( i ) antiviral drugs exert selective pressure on the virus, resulting in the generation of more fit viral progeny that are resistant to treatment; and ( ii ) antiviral drugs do not directly inhibit immune-mediated pulmonary injury that is a significant component of disease. Here we show that dampening the host's immune response against influenza virus using an immunomodulatory drug, AAL-R, provides significant protection from mortality (82%) over that of the neuraminidase inhibitor oseltamivir alone (50%). AAL-R combined with oseltamivir provided maximum protection against a lethal challenge of influenza virus (96%). Mechanistically, AAL-R inhibits cellular and cytokine/chemokine responses to limit immunopathologic damage, while maintaining host control of virus replication. With cytokine storm playing a role in the pathogenesis of a wide assortment of viral, bacterial, and immunologic diseases, a therapeutic approach using sphingosine analogs is of particular interest.
The phosphoprotein (P) of vesicular stomatitis virus (VSV) is a subunit of the viral RNA polymerase. In previous studies, we demonstrated that insertion of 19 amino acids in the hinge region of the protein had no significant effect on P protein function. In the present study, we inserted full-length enhanced green fluorescent protein (eGFP) in frame into the hinge region of P and show that the fusion protein (PeGFP) is functional in viral genome transcription and replication, albeit with reduced activity. A recombinant vesicular stomatitis virus encoding PeGFP in place of the P protein (VSV-PeGFP), which possessed reduced growth kinetics compared to the wild-type VSV, was recovered. Using the recombinant VSV-PeGFP, we show that the viral replication proteins and the de novo-synthesized RNA colocalize to sites throughout the cytoplasm, indicating that replication and transcription are not confined to any particular region of the cytoplasm. Real-time imaging of the cells infected with the eGFP-tagged virus revealed that, following synthesis, the nucleocapsids are transported toward the cell periphery via a microtubule (MT)-mediated process, and the nucleocapsids were seen to be closely associated with mitochondria. Treatment of cells with nocodazole or Colcemid, drugs known to inhibit MT polymerization, resulted in accumulation of the nucleocapsids around the nucleus and also led to inhibition of infectious-virus production. These findings are compatible with a model in which the progeny viral nucleocapsids are transported toward the cell periphery by MT and the transport may be facilitated by mitochondria.
A biologically contained influenza A virus that stably expresses a foreign gene can be effectively traced, used to generate a novel multivalent vaccine and have its replication easily assessed, all while satisfying safety concerns regarding pathogenicity or reversion. This study generated a PB2-knockout (PB2-KO) influenza virus that harboured the GFP reporter gene in the coding region of its PB2 viral RNA (vRNA). Replication of the PB2-KO virus was restricted to a cell line stably expressing the PB2 protein. The GFP gene-encoding PB2 vRNA was stably incorporated into progeny viruses during replication in PB2-expressing cells. The GFP gene was expressed in virus-infected cells with no evidence of recombination between the recombinant PB2 vRNA and the PB2 protein mRNA. Furthermore, other reporter genes and the haemagglutinin and neuraminidase genes of different virus strains were accommodated by the PB2-KO virus. Finally, the PB2-KO virus was used to establish an improved assay to screen neutralizing antibodies against influenza viruses by using reporter gene expression as an indicator of virus infection rather than by observing cytopathic effect. These results indicate that the PB2-KO virus has the potential to be a valuable tool for basic and applied influenza virus research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.