Due to the enhanced price of electricity, the gradual depletion of fossil fuels, and the global warming concerns, power loss minimization through deployment of distributed generators (DGs) has attracted significant attention in recent decades. This paper proposes a genetic algorithm (GA) based strategy for minimization of active and reactive power losses through optimal location and size of DGs. It also quantifies and tallies the total network power losses for the cases with random as well as optimal allocation of DGs. To validate the accuracy of the obtained results from GA, another nature-inspired optimization algorithm, cuckoo search, is also deployed. The simulation results on IEEE 30 and 118 bus systems indicate that the proposed strategy not only can effectively reduce the total network active and reactive power losses but also lead to the improvement of network voltage profile.
In recent decades, the rapid rise in electricity demand has compelled transmission and distribution systems to operate at almost their maximum capacity. This can pose numerous technical challenges such as excessive power losses, voltage and transient instabilities, as well as reduced power quality and reliability. Employment of Flexible Alternating Current Transmission System (FACTS) devices can be an effective approach to obviate such challenges and reinforce the power system functionality. Nevertheless, FACTS devices require a high initial investment, and hence their optimal allocation in terms of various aspects such as type, size and location is of utmost importance. This cannot be achieved without the deployment of optimization techniques. The aim of this paper is to provide a comprehensive review of the existing proposals for the enhancement of power system performance adopting FACTS devices. Adhering to that, an in-depth analysis is carried out, in which the most pertinent options are classified into specific groups based on their optimization objectives. Finally, a comparative analysis is accomplished in which the main attributes and drawbacks of each optimization technique are presented.
Mustard is locally popular with the name of tora/rayo/raichi is getting priority among the farmers due to its dual advantage of leafy vegetables and oilseed. With the objective identification of the potential mustard genotypes from the available gene pools, a coordinated Varietal Trial (CVT) was conducted in Oilseed Research Program, Nawalpur. A total of 14 mustard genotypes were evaluated in a randomized complete block design (RCBD) with three replications. The plot size was 10 m2 with five rows of 3-meter length maintaining inter-row of 40 cm and intra-row spacing of 15 cm. While depicting the yield, ICJ01-11 was considered the highest yielding genotype with the average yield of 521 kg/ha followed by ICJ9708 with the yield of 467 kg/ha and RH30 with the yield of 450 kg/ha. Due to the pivotal role of mustard as an oilseed production, it is indispensable to evaluate the available gene pool of local landrace, varieties and foreign genotypes of mustard to find out the highest yielding. So these promising genotypes can be used the in future to develop varieties of genotypes with high yield.
Since the inception of industrialization, power system has been an indispensable aspect of economy. With the progression of time, technology has impalpably commingled into our lifestyle. Alongside blooming technologies, energy demand is proliferating and power companies are begetting energy at their best to quench it. Growing reliance on power system has brought its quality into more advertence. Various electronic devices and topologies have been invented to enhance power quality and reliability; numerous others are still underway. During the course, power system has grown to an intricate network of sources, loads and control devices, leading to various issues such as transmission congestion and high losses. This paper discusses ways to ameliorate congestion and gives an overview of relationship between our present energy resources and ecological threats like global warming. Moreover, it points out various power system problems such as energy losses and transients. The necessity of FACTS devices has also been elaborated alongside their classification and comparison. Finally, numerous topologies and optimization methods proposed in the technical literature have been classified and analyzed to alleviate power system conundrums, and a glimpse into future energy trends is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.