Toward understanding topographically specific branching of retinal axons in their target area, we have studied the interaction between neurotrophin receptors and members of the Eph family. TrkB and its ligand BDNF are uniformly expressed in the retina and tectum, respectively, and exert a branch-promoting activity, whereas EphAs and ephrinAs are expressed in gradients in retina and tectum and can mediate a suppression of axonal branching. We have identified a novel cis interaction between ephrinA5 and TrkB on retinal ganglion cell axons. TrkB interacts with ephrinA5 via its second cysteine-rich domain (CC2), which is necessary and sufficient for binding to ephrinA5. Their functional interaction is twofold: ephrinA5 augments BDNF-promoted retinal axon branching in the absence of its activator EphA7-Fc, whereas EphA7-Fc application abolishes branching in a local and concentration-dependent manner. The importance of TrkB in this process is shown by the fact that overexpression of an isolated TrkB-CC2 domain interfering with the ephrinA/TrkB interaction abolishes this regulatory interplay, whereas knockdown of TrkB via RNA interference diminishes the ephrinA5-evoked increase in branching. The ephrinA/Trk interaction is neurotrophin induced and specifically augments the PI-3 kinase/Akt pathway generally known to be involved in the promotion of branching. In addition, ephrinAs/TrkB modulate axon branching and also synapse formation of hippocampal neurons. Our findings uncover molecular mechanisms of how spatially restricted axon branching can be achieved by linking globally expressed branch-promoting with differentially expressed branch-suppressing activities. In addition, our data suggest that growth factors and the EphA-ephrinA system interact in a way that affects axon branching and synapse development.
The violet- and ultraviolet-sensitive visual pigments of birds belong to the same class of pigments as the violet-sensitive (so-called blue) pigments of mammals. However, unlike the pigments from mammals and other vertebrate taxa which, depending on species, have lambda(max) values of either around 430 nm or around 370 nm, avian pigments are found with lambda(max) values spread across this range. In this paper, we present the sequences of two pigments isolated from Humbolt penguin and pigeon with intermediate lambda(max) values of 403 and 409 nm, respectively. By comparing the amino acid sequences of these pigments with the true UV pigments of budgerigar and canary and with chicken violet with a lambda(max) value of 420 nm, we have been able to identify five amino acid sites that show a pattern of substitution between species that is consistent with differences in lambda(max). Each of these substitutions has been introduced into budgerigar cDNA and expressed in vitro in COS-7 cells. Only three resulted in spectral shifts in the regenerated pigment; two had relatively small effects and may account for the spectral shifts between penguin, pigeon, and chicken whereas one, the replacement of Ser by Cys at site 90 in the UV pigments, produced a 35 nm shortwave shift that could account for the spectral shift from 403 nm in penguin to around 370 nm in budgerigar and canary.
The short-wave-sensitive (SWS) visual pigments of vertebrate cone photoreceptors are divided into two classes on the basis of molecular identity, SWS1 and SWS2. Only the SWS1 class are present in mammals. The SWS1 pigments can be further subdivided into violet-sensitive (VS), with lambda(max) (the peak of maximal absorbance) values generally between 400 and 430 nm, and ultraviolet-sensitive (UVS), with a lambda(max)<380 nm. Phylogenetic evidence indicates that the ancestral pigment was UVS and that VS pigments have evolved separately from UVS pigments in the different vertebrate lineages. In this study, we have examined the mechanism of evolution of VS pigments in the mammalian lineage leading to present day ungulates (cow and pig). Amino acid sequence comparisons of the UVS pigments of teleost fish, amphibia, reptiles and rodents show that site 86 is invariably occupied by Phe but is replaced in bovine and porcine VS pigments by Tyr. Using site-directed mutagenesis of goldfish UVS opsin, we have shown that a Phe-86-->Tyr substitution is sufficient by itself to shift the lambda(max) of the goldfish pigment from a wild-type value of 360 nm to around 420 nm, and the reverse substitution of Tyr-86-Phe into bovine VS opsin produces a similar shift in the opposite direction. The substitution of this single amino acid is sufficient to account therefore for the evolution of bovine and porcine VS pigments. The replacement of Phe with polar Tyr at site 86 is consistent with the stabilization of Schiff-base protonation in VS pigments and the absence of protonation in UVS pigments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.