Coronavirus disease 2019 (COVID-19) pandemic has affected health care systems worldwide. Severe presentations of COVID-19 such as severe pneumonia and acute respiratory distress syndrome (ARDS) have been associated with the post-viral activation and release of cytokine/chemokines which leads to a “cytokine storm” causing inflammatory response and destruction, mainly affecting the lungs. COVID-19 activation of transcription factor, NF-kappa B (NF-κB) in various cells such as macrophages of lung, liver, kidney, central nervous system, gastrointestinal system and cardiovascular system leads to production of IL-1, IL-2, IL-6, IL-12, TNF-α, LT-α, LT-β, GM-CSF, and various chemokines. The sensitised NF-κB in elderly and in patients with metabolic syndrome makes this set of population susceptible to COVID-19 and their worse complications, including higher mortality. Immunomodulation at the level of NF-κB activation and inhibitors of NF-κB (IκB) degradation along with TNF-α inhibition will potentially result in a reduction in the cytokine storm and alleviate the severity of COVID-19. Inhibition of NF-κB pathway has a potential therapeutic role in alleviating the severe form of COVID-19.
The present Study investigated the intrinsic ability of adipose tissue-derived stem cells (ADSCs) and their neural transdifferentiation in a stage-specific manner. Woodbury’s Chemical induction was implemented with modifications to achieve neural transdifferentiation. In Group I, ADSCs were preinduced with β-mercaptoethanol (β-ME) and later, with neural induction medium (NIM). In Group II, ADSCs were directly treated with NIM. In Group III, a DNA methyltransferase (DNMT) inhibitor 5-azacytidine was applied to understand whether transdifferentiation is controlled by epigenetic marks. Irrespective of the presence of (β-ME), the differentiation protocol resulted in glial-lineage cells. Group III produced poorly -differentiated neural cells with neuron-specific enolase positivity. A neuroprogenitor stage (NPC) was identified at d 11 after induction only in Group I. In other groups, this stage was not morphologically distinct. We explored the stage-specific incidence NPC, by alternatively treating them with basic fibroblast growth factor (bFGF), and antioxidants to validate if different signalling could cause varied outcomes (Group IV). They differentiated into neurons, as defined by cell polarity and expression of specific proteins. Meanwhile, neuroprogenitors exposed to NIM (Group I) produced glial-lineage cells. Further refinement and study of the occurrence and terminal differentiation of neuroprogenitors would identify a promising source for neural tissue replacement.
Infrapatellar fat pad-derived stem cells (IFPSCs) are emerging as an alternative to adipose tissue-derived stem cells (ADSCs) from other sources. They are a reliable source of autologous stem cells obtained from medical waste that are suitable for use in cell-based therapy, tissue engineering and regenerative medicine. Such clinical applications require a vast number of high-quality IFPSCs. Unlike embryonic stem cells (ESCs), ADSCs and IFPSCs have limited population doubling capacity; however,
in vitro
expansion of primary IFPSCs through multiple passages (referred to as P) is a crucial step to acquire the desired population of cells. The present study investigated the effect of multiple passages on the stemness of IFPSCs during expansion and the possibility of predicting the loss of stemness using certain markers. IFPSCs were isolated from infrapatellar fat pad tissue resected during knee arthroplasty performed on aged patients (>65 years old). These cells from the stromal vascular fraction were serially passaged to at least to P7, and their stemness characteristics were examined at each passage. It was observed that IFPSCs maintained their spindle-shaped morphology, self-renewability and homogeneity at P2-4. Furthermore, immunostaining revealed that these cells expressed mesenchymal stem cell (CD166, CD90 and CD105) and ESC markers [Sox2, Nanog, Oct4 and nucleostemin (NS)], whereas the hematopoietic stem cell marker CD45 was absent. These cells were also able to differentiate into the three germ layer cell types, thus confirming their ability to generate clinical grade cells. The findings indicated that prolonged culture of IFPSCs (P>6) led to the loss of the stem cell proliferative marker NS, with an increased population doubling time and progression toward neuronal differentiation, acquiring a neurogenic phenotype. Additionally, IFPSCs demonstrated an inherent ability to secrete neurotrophic factors and express receptors for these factors, which is the cause of neuronal differentiation at later passages. Therefore, these findings validated NS as a prognostic indicator for impaired stemness and identified IFPSCs as a promising source for cell-based therapy, particularly for neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.