SummaryIntracellular signals triggered by DNA breakage flow through proteins containing BRCT (BRCA1 C-terminal) domains. This family, comprising 23 conserved phosphopeptide-binding modules in man, is inaccessible to small-molecule chemical inhibitors. Here, we develop Bractoppin, a drug-like inhibitor of phosphopeptide recognition by the human BRCA1 tandem (t)BRCT domain, which selectively inhibits substrate binding with nanomolar potency in vitro. Structure-activity exploration suggests that Bractoppin engages BRCA1 tBRCT residues recognizing pSer in the consensus motif, pSer-Pro-Thr-Phe, plus an abutting hydrophobic pocket that is distinct in structurally related BRCT domains, conferring selectivity. In cells, Bractoppin inhibits substrate recognition detected by Förster resonance energy transfer, and diminishes BRCA1 recruitment to DNA breaks, in turn suppressing damage-induced G2 arrest and assembly of the recombinase, RAD51. But damage-induced MDC1 recruitment, single-stranded DNA (ssDNA) generation, and TOPBP1 recruitment remain unaffected. Thus, an inhibitor of phosphopeptide recognition selectively interrupts BRCA1 tBRCT-dependent signals evoked by DNA damage.
The tandem BRCT domains (tBRCT) of BRCA1 engage phosphoserine‐containing motifs in target proteins to propagate intracellular signals initiated by DNA damage, thereby controlling cell cycle arrest and DNA repair. Recently, we identified Bractoppin, the first small‐molecule inhibitor of the BRCA1 tBRCT domain, which selectively interrupts BRCA1‐mediated cellular responses evoked by DNA damage. Here, we combine structure‐guided chemical elaboration, protein mutagenesis and cellular assays to define the structural features responsible for Bractoppin's activity. Bractoppin fails to bind mutant forms of BRCA1 tBRCT bearing K1702A, a key residue mediating phosphopeptide recognition, or F1662R or L1701K that adjoin the pSer‐recognition site. However, the M1775R mutation, which engages the Phe residue in the consensus phosphopeptide motif pSer‐X‐X‐Phe, does not affect Bractoppin binding, confirming a binding mode distinct from the substrate phosphopeptide binding. We explored these structural features through structure‐guided chemical elaboration and characterized structure–activity relationships (SARs) in biochemical assays. Two analogues, CCBT2088 and CCBT2103 were effective in abrogating BRCA1 foci formation and inhibiting G2 arrest induced by irradiation of cells. Collectively, our findings reveal structural features underlying the activity of a novel inhibitor of phosphopeptide recognition by the BRCA1 tBRCT domain, providing fresh insights to guide the development of inhibitors that target protein–protein interactions.
Thymidylate kinase (TMK) is a key enzyme for the synthesis of DNA, making it an important target for the development of anticancer, antibacterial, and antiparasitic drugs. TMK homologs exhibit significant variations in sequence, residue conformation, substrate specificity, and oligomerization mode. However, the influence of sequence evolution and conformational dynamics on its quaternary structure and function has not been studied before. Based on extensive sequence and structure analyses, our study detected several non-conserved residues which are linked by co-evolution and are implicated in the observed variations in flexibility, oligomeric assembly, and substrate specificity among the homologs. These lead to differences in the pattern of interactions at the active site in TMKs of different specificity. The method was further tested on TMK from Sulfolobus tokodaii (StTMK) which has substantial differences in sequence and structure compared to other TMKs. Our analyses pointed to a more flexible dTMP-binding site in StTMK compared to the other homologs. Binding assays proved that the protein can accommodate both purine and pyrimidine nucleotides at the dTMP binding site with comparable affinity. Additionally, the residues responsible for the narrow specificity of Brugia malayi TMK, whose three-dimensional structure is unavailable, were detected. Our study provides a residue-level understanding of the differences observed among TMK homologs in previous experiments. It also illustrates the correlation among sequence evolution, conformational dynamics, oligomerization mode, and substrate recognition in TMKs and detects co-evolving residues that affect binding, which should be taken into account while designing novel inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.