SCH 51866 is a potent and selective PDE1 and PDE5 inhibitor. The antiplatelet, antiproliferative, and hemodynamic effects of SCH 51866 were compared with those of E4021, a highly selective PDE5 inhibitor. SCH 51866 inhibited PDE1 and PDE5 isozymes with a 50% inhibitory concentration (IC50) of 70 and 60 nM, respectively. SCH 51866 and E4021 inhibited washed human platelet aggregation induced by collagen with an IC50 of 10 and 4 microM, respectively, and attenuated (p < 0.05) the adhesion of 111indium-labeled platelets to the nylon filament-injured rat aorta. The doses of SCH 51866 and E4021 that inhibited platelet adhesion caused significant increases in platelet cyclic guanosine monophosphate (cGMP; p < 0.05). SCH 51866 (1-10 mg/kg, p.o. twice daily) but not E4021 (3-30 mg/kg, p.o twice daily) inhibited neointima formation in the carotid arteries of spontaneously hypertensive rats (SHRs) subjected to balloon angioplasty. Moreover, SCH 51866 (0.3-10 mg/kg, p.o.) elicited dose-dependent reduction in blood pressure in SHRs, whereas E4021 (3-30 mg/kg, p.o.) did not affect blood pressure in SHRs. In conclusion, the data suggest that inhibition of PDE1 and PDE5 isozymes by SCH 51866 exerts antiplatelet and vascular protective effects. In comparison, inhibition of PDE5 alone by E4021 exhibited antiplatelet effects without affecting neointima formation.
The relative importance of endothelial derived relaxing factor (EDRF)/nitric oxide (NO) in maintaining kidney function in normal condition and in acute renal failure (ARF) were evaluated in inactin anesthetized rats. ARF was induced by unilateral occlusion of the left renal artery (40 min) followed by reperfusion, with the contralateral kidney serving as normal control. This protocol resulted in marked reductions in renal plasma flow (RPF), glomerular filtration rate (GFR) and increases in fractional sodium excretion (FENa) and urinary protein excretion in the post-ischemic kidney in comparison to the contralateral normal kidney. Administration of the nitric oxide (NO) synthase inhibitor NG--monomethyl-L-arginine (0.25 mg/kg per min, L-NMMA) exacerbated the ischemia-induced changes in renal functions as reflected by further reductions in urine flow (V), GFR, marked sodium wasting and renal edema. Pretreatment of the animals with NO precursor L-arginine (2.5 mg/kg per min, L-Arg) abolished the detrimental effects of L-NMMA in ARF. In contrast, D-Arginine (2.5 mg/kg per min, D-Arg) failed to reverse the detrimental effects of L-NMMA. Infusion of L-Arg alone also resulted in improvements in RPF and GFR in the ischemic kidney. The results of the present study suggest that the function of the ischemic kidney is sustained by EDRF/NO and is thus more sensitive to NO synthase inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.