We recently characterized gene expression patterns in gastrointestinal stromal tumors (GISTs) using cDNA microarrays, and found that the gene FLJ10261 (DOG1, discovered on GIST-1), encoding a hypothetical protein, was specifically expressed in GISTs. The immunoreactivity of a rabbit antiserum to synthetic DOG1 peptides was assessed on two soft tissue tumor microarrays. The tissue microarrays included 587 soft tissue tumors, with 149 GISTs, including 127 GIST cases for which the KIT and PDGFRA mutation status was known. Immunoreactivity for DOG1 was found in 136 of 139 (97.8%) of scorable GISTs. All seven GIST cases with a PDGFRA mutation were DOG1-positive, while most of these failed to react for KIT. The immunohistochemical findings were confirmed with in situ hybridization probes for DOG1, KIT, and PDGFRA.
Background: Simple sequence repeats (SSRs) are found in most organisms, and occupy about 3% of the human genome. Although it is becoming clear that such repeats are important in genomic organization and function and may be associated with disease conditions, their systematic analysis has not been reported. This is the first report examining the distribution and density of simple sequence repeats (1-6 base-pairs (bp)) in the entire human genome.
Overall survival of patients with osteosarcoma (OS) has improved little in the past three decades and better models for study are needed. OS is common in large dog breeds and is genetically inducible in mice, making the disease ideal for comparative genomic analyses across species. Understanding the level of conservation of inter-tumor transcriptional variation across species and how it is associated with progression to metastasis will enable us to more efficiently develop effective strategies to manage OS and improve therapy. In this study, transcriptional profiles of OS tumors and cell lines derived from humans (n=49), mice (n=103) and dogs (n=34) were generated using RNA-sequencing. Conserved inter- tumor transcriptional variation was present in tumor sets from all three species and comprised gene clusters associated with cell cycle and mitosis and with the presence or absence of immune cells. Further, we developed a novel Gene Cluster Expression Summary Score (GCESS) to quantify inter-tumor transcriptional variation and demonstrated that these GCESS values associated with patient outcome. Human OS tumors with GCESS values suggesting decreased immune cell presence were associated with metastasis and poor survival. We validated these results in an independent human OS tumor cohort and in 15 different tumor data sets obtained from The Cancer Genome Atlas (TCGA). Our results suggest that quantification of immune cell absence and tumor cell proliferation may better inform therapeutic decisions and improve overall survival for OS patients.
Intercellular communication plays a critical role in the ever-evolving landscape of invasive cancers. Recent studies have elucidated the potential role of tunneling nanotubes (TNTs) in this function. TNTs are long, filamentous, actin-based cell protrusions that mediate direct cell-to-cell communication between malignant cells. In this study, we investigated the formation of TNTs in response to variable concentrations of the chemotherapeutic drug doxorubicin, which is used extensively in the treatment of cancer patients. Doxorubicin stimulated an increased formation of TNTs in pancreatic cancer cells, and this occurred in a dose-dependent fashion. Furthermore, TNTs facilitated the intercellular redistribution of this drug between connected cells in both pancreatic and ovarian cancer systems in vitro. To provide supportive evidence for the relevance of TNTs in pancreatic cancer in vivo, we performed multiphoton fluorescence microscopy and imaged TNTs in tumor specimens resected from three human patients with pancreatic adenocarcinoma, and one with neuroendocrine carcinoma. In sum, TNT formation was upregulated in aggressive forms of pancreatic carcinoma, was further stimulated after chemotherapy exposure, and acted as a novel method for drug efflux. These findings implicate TNTs as a potential novel mechanism of drug resistance in chemorefractory forms of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.