We establish a normal approximation for the limiting distribution of partial sums of random Rademacher multiplicative functions over function fields, provided the number of irreducible factors of the polynomials is small enough. This parallels work of Harper for random Rademacher multiplicative functions over the integers.
We consider the problem of multilabel classification and investigate learnability in batch and online settings. In both settings, we show that a multilabel function class is learnable if and only if each single-label restriction of the function class is learnable. As extensions, we also study multioutput regression in the batch setting and bandit feedback in the online setting. For the former, we characterize learnability w.r.t. Lp losses. For the latter, we show a similar characterization as in the full-feedback setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.