In this work, we report the development of a general strategy for enhancing the efficiency of target capture in immunoassays, using a bifunctional fusion protein construct which incorporates a substrate-anchoring moiety for the high-abundance immobilization of an antigen-binding domain. This approach was informed by the development of a pseudo first-order rate constant model, and tested in a paper-based assay format using a fusion construct consisting of an rcSso7d binding module and a cellulose-binding domain. These rcSso7d-CBD fusion proteins were solubly expressed and purified from bacteria in high molar yields, and enable oriented, high-density adsorption of the rcSso7d binding species to unmodified cellulose within a 30-second incubation period. These findings were validated using two distinct, antigen-specific rcSso7d variants, which were isolated from a yeast surface display library via flow cytometry. Up to 1.6 micromoles of rcSso7d-CBD was found to adsorb per gram of cellulose, yielding a volume-averaged binder concentration of up to 760μM within the resulting active material. At this molar abundance, the target antigen is captured from solution with nearly 100% efficiency, maximizing the attainable sensitivity for any given diagnostic system.
Many biotechnological applications require the simultaneous binding of affinity reagents to nonoverlapping target epitopes, the most prominent example being sandwich immunoassays. Typically, affinity pairs are identified via post facto functional analysis of clones that were not selected for complementarity. Here, we developed the Rapid Affinity Pair Identification via Directed Selection (RAPIDS) process, which enables the efficient identification of affinity reagents that function together as complementary pairs, from in vitro libraries of ∼109 variants. We used RAPIDS to develop highly specific affinity pairs against biomarkers of tuberculosis, Zika virus, and sepsis. Without additional trial-and-error screening, these affinity pairs exhibited utility in multiple assay formats. The RAPIDS process applies selective pressure to hundreds of thousands of potential affinity pairs to efficiently identify complementary pairs that bind to separate epitopes without binding to one another or nontargets, yielding diagnostic assays that are sensitive and specific by design.
We report postirradiation photochemistry studies of condensed ammonia using photons of energies below condensed ammonia's ionization threshold of ∼9 eV. Hydrazine (N 2 H 4 ), diazene (also known as diimide and diimine; N 2 H 2 ), triazane (N 3 H 5 ), and one or more isomers of N 3 H 3 are detected as photochemistry products during temperature-programmed desorption. Product yields increase monotonically with (1) photon fluence and (2) film thickness. In the studies reported herein, the energies of photons responsible for product formation are constrained to less than 7.4 eV. Previous post-irradiation photochemistry studies of condensed ammonia employed photons sufficiently energetic to ionize condensed ammonia and initiate radiation chemistry. Such studies typically involve ion−molecule reactions and electron-induced reactions in addition to photochemistry. Although photochemistry is cited as a dominant mechanism for the synthesis of prebiotic molecules in interstellar ices, to the best of our knowledge, ours is one of the first astrochemically relevant studies that has found unambiguous evidence for condensed-phase chemical synthesis induced by photons in the absence of ionization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.