In recent years, there has been a growing interest in therapeutic peptides within the pharmaceutical industry with more than 50 peptide drugs on the market, approximately 170 in clinical trials, and >200 in preclinical development. However, the current state of the art in peptide synthesis involves primarily legacy technologies with use of large amounts of highly hazardous reagents and solvents and little focus on green chemistry and engineering. In 2016, the ACS Green Chemistry Institute Pharmaceutical Roundtable identified development of greener processes for peptide API as a critical unmet need, and as a result, a new Roundtable team formed to address this important area. The initial focus of this new team is to highlight best practices in peptide synthesis and encourage much needed innovations. In this Perspective, we aim to summarize the current challenges of peptide synthesis and purification in terms of sustainability, highlight possible solutions, and encourage synergies between academia, the pharmaceutical industry, and contract research organizations/contract manufacturing organizations.
Lantibiotics are ribosomally synthesized and post-translationally modified antimicrobial peptides containing thioether rings. In addition to these crosslinks, the clinical candidate lantibiotic NAI-107 also possesses a C-terminal S-[(Z)-2-aminovinyl]-D-cysteine (AviCys) and a unique 5-chloro-L-tryptophan (ClTrp) moiety linked to its potent bioactivity. Bioinformatic and genetic analyses on the NAI-107 biosynthetic gene cluster identified mibH and mibD encoding flavoenzymes responsible for the formation of ClTrp and AviCys, respectively. The biochemical basis for the installation of these modifications on NAI-107 and the substrate specificity of either enzyme is currently unknown. Using a combination of mass spectrometry, liquid chromatography, and bioinformatic analyses we demonstrate that MibD is an FAD-dependent Cys decarboxylase and that MibH is an FADH2-dependent Trp halogenase. Most FADH2-dependent Trp halogenases halogenate free Trp, but MibH was only active when Trp was embedded within its cognate peptide substrate deschloro NAI-107. Structural comparison of the 1.85-Å resolution crystal structure of MibH with other flavin-dependent Trp halogenases revealed that subtle amino acid differences within the MibH substrate binding site generates a solvent exposed crevice presumably involved in determining its unusual substrate specificity.
Lanthipeptides are a class of post-translationally modified peptide natural products. They contain lanthionine (Lan) and methyllanthionine (MeLan) residues, which generate cross-links and endow the peptides with various biological activities. The mechanism of a highly substrate-tolerant lanthipeptide synthetase, ProcM, was investigated herein. We report a hybrid ligation strategy to prepare a series of substrate analogues designed to address a number of mechanistic questions regarding catalysis by ProcM. The method utilizes expressed protein ligation to generate a C-terminal thioester of the leader peptide of ProcA, the substrate of ProcM. This thioester was ligated with a cysteine derivative that resulted in an alkyne at the C-terminus of the leader peptide. This alkyne in turn was used to conjugate the leader peptides to a variety of synthetic peptides by copper-catalyzed azide–alkyne cycloaddition. Using deuterium-labeled Ser and Thr in the substrate analogues thus prepared, dehydration by ProcM was established to occur from C-to-N-terminus for two different substrates. Cyclization also occurred with a specific order, which depended on the sequence of the substrate peptides. Furthermore, using orthogonal cysteine side-chain protection in the two semisynthetic peptide substrates, we were able to rule out spontaneous non-enzymatic cyclization events to explain the very high substrate tolerance of ProcM. Finally, the enzyme was capable of exchanging protons at the α-carbon of MeLan, suggesting that ring formation could be reversible. These findings are discussed in the context of the mechanism of the substrate-tolerant ProcM, which may aid future efforts in lanthipeptide engineering.
Lanthipeptides are natural products that belong to the family of ribosomally synthesized and posttranslationally modified peptides (RiPPs). They contain characteristic lanthionine (Lan) or methyllanthionine (MeLan) structures that contribute to their diverse biological activities. Despite its structurally diverse set of 30 substrates, the highly substrate-tolerant lanthipeptide synthetase ProcM is shown to display high selectivity for formation of a single product from selected substrates. Mutation of the active site zinc ligands to alanine or the unique zinc ligand Cys971 to histidine resulted in a decrease of the cyclization rate, especially for the second cyclization of the substrates ProcA1.1, ProcA2.8 and ProcA3.3. Surprisingly, for ProcA3.3 these mutations also altered the regioselectivity of cyclization resulting in a new major product. ProcM was not able to correct the ring topology of incorrectly cyclized intermediates and products, suggesting that thermodynamic control is not operational. Collectively, the data in this study suggest that the high regioselectivity of product formation is governed by the selectivity of the initially formed ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.