Yersinia pestis the causative agent of plague, is highly pathogenic and poses very high risk to public health. The outer membrane protein Ail (Adhesion invasion locus) is one of the most highly expressed proteins on the cell surface of Y. pestis, and a major target for the development of medical countermeasures. Ail is essential for microbial virulence and is critical for promoting the survival of Y. pestis in serum. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but the protein’s activity is influenced by the detergents in these samples, underscoring the importance of the surrounding environment for structure–activity studies. Here we describe the backbone structure of Ail, determined in lipid bilayer nanodiscs, using solution NMR spectroscopy. We also present solid-state NMR data obtained for Ail in membranes containing lipopolysaccharide (LPS), a major component of the bacterial outer membranes. The protein in lipid bilayers, adopts the same eight-stranded β-barrel fold observed in the crystalline and micellar states. The membrane composition, however, appears to have a marked effect on protein dynamics, with LPS enhancing conformational order and slowing down the 15N transverse relaxation rate. The results provide information about the way in which an outer membrane protein inserts and functions in the bacterial membrane.
The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail’s biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with 13C or 1H detection, have very narrow line widths (0.40–0.60 ppm for 13C, 0.11–0.15 ppm for 1H, and 0.46–0.64 ppm for 15N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The 1H-detected solid-state NMR 1H/15N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR 1H/15N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.
Multisite phosphorylation is required for the biological function of serine-arginine (SR) proteins, a family of essential regulators of mRNA splicing. These modifications are catalyzed by serine-arginine protein kinases (SRPKs) that phosphorylate numerous serines in arginine-serine-rich (RS) domains of SR proteins using a directional, C-to-N-terminal mechanism. The present studies explore how SRPKs govern this highly biased phosphorylation reaction and investigate biological roles of the observed directional phosphorylation mechanism. Using nuclear magnetic resonance (NMR) spectroscopy with two separately expressed domains of SRSF1 we showed that several residues in the RNA-binding motif 2 (RRM2) interact with the N-terminal region of the RS domain (RS1). These contacts provide a structural framework that balances the activities of SRPK1 and the protein phosphatase PP1, thereby regulating the phosphoryl content of the RS domain. Disruption of the implicated intramolecular RRM2–RS1 interaction impairs both the directional phosphorylation mechanism and the nuclear translocation of SRSF1 demonstrating that the intrinsic phosphorylation bias is obligatory for SR protein biological function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.