This study aims to analyze the accomplishment of cutting performance in hot abrasive jet machining (HAJM) of hardstone quartz concerning surface roughness, taper angle, and material removal rate. Fifteen sets of experimental trials were conducted by considering three cutting parameters (air pressure, abrasive temperature, standoff-distance) based on Box-Behnken's design of experiments. Additionally, response surface methodology, analysis of variance, and statistical technique (here, desirability function approach) followed by computational approach (here, genetic algorithm) are, respectively, employed for experimental investigation, predictive modeling, and multi-response optimization. Thereafter, the effectiveness of proposed two multi-objective optimization techniques is evaluated by confirmation test and subsequently, the best optimal solution is used for cost analysis to rationalize the usefulness of hot abrasives in AJM process with an intension to raise the awareness in the manufacturing industry. Based on results, application of hot abrasives in AJM process has shown an attention in enhancing the cutting performance for material removal.
The proposed research work accomplishes the experimental study and computational fluid dynamics (CFD) technique for erosive footprint prediction extent in hot abrasive jet machining (HAJMing) constraints on target surface erosion rate, surface roughness of intricately shaped tapered holes generation. The CFD-obtained footprints were in superior agreement with experimentally measured data. HAJMing process uses a relatively high speed air-hot abrasive stream to produce both high accuracy micro-channels and tapered holes. HAJM also defines itself phenomenal competence over all advanced manufacturing techniques due to its growing demands for better surface reliability with defects (mostly stress, heat) free surfaces. Zirconia is widely accepted and associated in the non-conventional machining processes and industries with the years of track on record of proven performance in a vast number of brittle materials. Most perceptible act in this research is the selection of abrasive particle to achieve the appropriate intricate shaped holes on zirconia ceramic with hot silicon carbide (SiC) abrasives. Machining of these features are done with varying the abrasive temperature. Optical microscopic view was considered for the generation of machined holes during HAJMing. All the experimental data were presented to study the effect of machining constraints on target surface erosion rate and surface roughness using HAJMing. Single impact experiments were executed to measure the target surface erosion due to impact of individual hot silicon carbide abrasive particles. An experimental setup has been designed to conduct the machining trials using Box-Behnken design of experiments. It is also shown that the generated workpiece surface contour and erosion rate are the function of machining constraints which have a negligible influence on air-abrasive flow characteristics. This research work also deals with the sustainability assessment under environmental-friendly hot abrasive-assisted machining conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.