Land sliding is a perennial problem in the Eastern Himalayas. Out of 0.42 million km2 of Indian landmass prone to landslide, 42% fall in the North East Himalaya, specially Darjeeling and Sikkim Himalaya. Most of these landslides are triggered by excessive monsoon rainfall between June and October in almost every year. Various attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity – duration of antecedent rainfall models on global, regional and local scale for triggering of the landslide. This paper describes local aspect of rainfall threshold for landslides based on daily rainfall data in and around north Sikkim road corridor region. Among 210 Landslides occurring from 2010 to 2016 were studied to analyze rainfall thresholds. Out of the 210 landslides, however, only 155 Landslides associated with rainfall data which were analyzed to yield a threshold relationship between rainfall intensity-duration and landslide initiation. The threshold relationship determined fits to lower boundary of the Landslide triggering rainfall events is I = 4.045 D - 0.25 (I=rainfall intensity (mm/h) and D=duration in (h)), revealed that for rainfall event of short time (24 h) duration with a rainfall intensity of 1.82 mm/h, the risk of landslides on this road corridor of the terrain is expected to be high. It is also observed that an intensity of 58 mm and 139 mm for 10-day and 20-day antecedent rainfall are required for the initiation of landslides in the study area. This threshold would help in improvement on traffic guidance and provide safety to the travelling tourists in this road corridor during the monsoon.
The shoreline is a very unpredictable, uncertain, and forever changing landscape for any coastal process. Due to erosional and accretional activities, the shoreline has continuously fluctuated with the continual process of waves and tides. Shore boundaries are determined by the shoreline at its furthest towards the sea (low tide) and extreme towards land (high tide). The present research aimed to identify the temporal alterations of shoreline and changes in land-cover between the areas of Rasulpur to Subarnarekha estuary, east coast of India with 70.04 km length of shoreline. An area amounting to 143sq.km had been selected for showing the land-cover changing and this area had witnessed the rapid growth of population and increasing industrial activities causing an unsurpassable impact on the environment. The present study used three multi dated imageries for land use/ land cover (LULC) map and seven multi-resolution satellite images were applied to estimate the long-term shoreline change rate by dividing the coastal area into three “littoral zones” (LZ). The Digital shoreline analysis system (DSAS) was applied to identify the shoreline change rate of the year 2000 to 2018. Several statistical methods, linear regression rate (LRR), net shoreline movement (NSM), End Point Rate (EPR) were used to find out the erosion and accretion rate. The result showed that maximum erosion had been found in LZ III, rate of -2.22 m/year. Maximum accretion had been identified in LZ I, at the rate of 35.5 m/year. The LULC showed that maximum vegetation area had been decreased in the year of 2010 (14.21sq.km) but 38.96sq.km vegetation area had increased in 2018. The prominent increase had been identified in built up and shallow water. Built up had been expanded from 25.59sq.km (2000) to 41.26sq.km (2018). Shallow water was increased from 5.53sq.km (2000) to 18.90sq.km (2018). Sand and soil showed a decreasing pattern from 2000 – 2018. The outcome acquired from the present study will play a significant role to estimate the shoreline migration rate and will be helpful for sustainable land use management. The shoreline change rate will be also useful for coastal planners to adopt mitigation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.