Osteogenesis Imperfecta (OI), also known as 'brittle bone disease', is a genetic bone disorder. OI bones experience frequent fractures. It is observed physical activity is equally beneficial in reducing OI bone fractures in both children and adults as mechanical stimulation improves bone mass and strength. Loading-induced mechanical strain and interstitial fluid flow stimulates bone remodeling activities. Several studies have characterized strain environment in OI bones, whereas, a very few studies attempted to characterize the interstitial fluid flow. OI significantly affect bone microarchitecture. Thus, the present study anticipates that canalicular fluid flow reduces in OI bone in comparison to healthy bone in response to physiological loading due to altered poromechanical properties. Hence, this work attempts to understand the canalicular fluid distribution in the single osteon model of OI and healthy bones. A poromechanical model of osteon is developed to compute pore-pressure and interstitial fluid flow as a function of gait loading pattern reported for OI and healthy subjects. Fluid distribution patterns are compared at different time-points of stance phase of the gait cycle. It is observed that fluid flow significantly reduces in OI bone. Additionally, flow is more static than dynamic in OI osteon in comparison to healthy subjects. The present work attempts to identify the plausible explanation behind low mechano-transduction capability of OI bone. This work may further be extended in designing better biomechanical strategies to enhance fluid flow in order to improve osteogenic activities in OI bone.
Background:Osteogenesis imperfecta (OI) is a genetic connective tissue disorder characterized by skeletal deformity and increased risk of fracture. Independent mobility is of concern for OI patients as it is associated with the quality of life. The present study investigates the variation of kinetic and kinematic gait parameters of type IV OI subjects and compares them with age-matched healthy subjects.Materials and Methods:Gait analysis is performed on five type IV OI patients and six age-matched normal subjects. Spatiotemporal, kinematic, and kinetic data are obtained using Helen Hayes marker placement protocol.Results:The results indicate an imprecise double-humped profile for vertical ground reaction force (GRF) with reduced ankle push off power and walking speed for OI subjects. Moreover, a comparison of vertical GRFs in OI subjects with that of healthy subjects suggests lower values for the former. The results encourage and motivate for further investigation with a bigger set of subjects.Conclusion:This information may be useful in developing a better understanding of pathological gait in type IV OI subjects, which ultimately helps the design of subject-specific implants, surgical preplanning, and rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.