<p>The Late Maastrichtian Deccan volcanic pulses contributed to a cumulative biotic stress that set the stage for the Cretaceous-Palaeogene boundary (KPB) mass extinction. The high-flux emissions of volcanogenic CO<sub>2</sub> and SO<sub>2</sub> into the atmosphere likely led to ocean acidification. The resultant carbonate crisis has been hypothesized as a key stressor for marine calcifying biota such as planktic foraminifera. The final ~50 ky of the Cretaceous at Bidart (France) record a unique concurrence of anomalous bulk-rock low magnetic susceptibility, high Hg/TOC, and high planktic foraminifera fragmentation index. This study documents new evidence of a biological (calcification) crisis in the geochemical and taphonomic Deccan benchmark interval.</p><p>The onset of the hypothesized acidification interval (~0.5 m below KPB) coincides with abrupt changes in the relative abundances of the heavily calcified globotruncanid (~30 to ~17%) and larger biserial tests (~38 to ~55%). The absolute abundances of target groups/species however show a marked decline in both the biserials and globotruncanids. The counts per gram within the benchmark fluctuate considerably. At the KPB, the relative abundances of robust tests are high, partly due to taphonomic overestimation. However, absolute abundances unequivocally show a decline in all analyzed groups e.g., globotruncanids, biserials, racemiguembelinids and <em>Planomalina brazoensis</em>. The benchmark interval also records smaller-than-average test sizes of <em>Globotruncana arca, Globotruncana mariei, Heterohelix globulosa, Pseudoguembelina hariaensis, Pseudotextularia elegans, Pseudoguembelina carsayae, Pseudoguembelina palpebra, Rugoglobigerina rugosa</em> and <em>P. brazoensis</em>, indicating intraspecific dwarfing. This same interval also records a measurable decrease in the test-wall thickness amongst adult (>150 &#181;m) specimens of <em>H. globulosa, R. rugosa, P. elegans, P. brazoensis</em>, further substantiating a carbonate crisis. The interpolation of geochemical, taphonomic and the new biological evidences strongly validate an ocean acidification event spanning ~50 ky preceding the KPB, a duration more consistent with Deccan volcanism as the cause.</p>
<p>The final ~0.5m interval of the Cretaceous-Paleogene (K-Pg) boundary at Bidart (France) constitutes the &#8220;Deccan benchmark&#8221; interval characterized by taphonomic and geochemical proxies of ocean acidification linked with Deccan volcanism. Planktic foraminifera census and morphometric data reveal a concurrence of dwarfed species, thinner test walls, high test fragmentation of planktic foraminifera and increased relative abundance of <em>Guembelitria spp.</em> Together, these evidences point toward severe biotic stress and a likely calcification crisis in planktic foraminifera in the final ~0.5m (~58 ky) of the late Maastrichtian at Bidart.</p> <p>In the sediment-water interface, the benthic foraminiferal assemblage increase to a dramatic >100,000 tests/gram, indicating a sediment-starved horizon at the KPB. Interestingly, a sharp increase in the relative proportion of heavily calcified genera like <em>Cibicidoides spp.</em> (~51%)<em>, Steinsioeina spp. </em>(~10%) and <em>Coryphostoma spp. </em>(~9%)<em> </em>is also recorded at the KPB. The taphonomic angle to such a record is rejected as the benthic foraminifera fragmentation index does not record the &#8216;acidification&#8217; event as significantly. Similarly, morphometric analysis reveals average sizes of thick-walled genera like <em>Cibicidoides spp., Steinsioeina spp., Gyroidinoides spp., Praebulimina </em>and <em>Coryphostoma spp.</em> increasing at the KPB and ~0.3m below it. A possible explanation for such a biotic advantage for the individuals building heavily calcified tests could be a carbonate super-saturation led by the extinction of pelagic calcifiers at the KPB. In the benchmark, rare occasions of dwarfing and reduced absolute abundances of calcareous benthic foraminifera imply a lower degree of environmental stress. Similarly, census analysis of agglutinated benthic foraminifera records an increased population within the benchmark, indicating a change in community structure. &#160;Whether such a change is a response to acidification or an artifact of preservation is currently under investigation. Our results support an acidification that was restricted to the surface ocean and resulted in severe (planktic) crisis, with limited effect on benthic foraminifera. This is consistent with a lack of benthic foraminifera extinctions across the K-Pg boundary.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.