Hybrid composites have great potential for specific strength and specific stiffness, effective in aerospace industries, submarines, and light-weight automotives. The mechanical strength and adhesiveness of hybrid laminates can be enhanced by effective use of matrix materials in different ratios of epoxy resin and epoxy hardener. Gentle use of resin and hardener in the fabrication of hybrid composites can alter tensile modulus, the bonding strength between matrix and fabric. Spectacular progress has been achieved by the selection of appropriate amounts of resin and hardener in the hybridization of composite laminate. Hybridization was made by Kevlar inorganic/organic fabrics and glass fabrics stacked with epoxy matrix material. To achieve the combination of mechanical properties and bonding strength, transparent epoxy resin and hardener of commercial grades mixed in various ratios are incorporated as matrix material to fabricate laminate. Three different sheets, named A (3:2), B (4:1), and C (2:3), were embedded by the hand layup method to prepare a hybrid composite. Experimental tests, according to ASTM 3039, were performed to determine the tensile mechanical properties. Peel tests, according to ASTM 6862-11, were performed to investigate the interlaminar strength between Kevlar and glass layers. Shore A and Shore C hardness durometers were used to find out the hardness of the specimens at different spots using the ASTM D-2240 standard. Finally, physical testing, such as density and then water absorption, was carried out using the ASTM D-570 standard to check the swelling ratio of the different specimens. The results obtained highlight that the specimen of the glass/Kevlar hybrid embedded in the ratio 3:2 in lamination has the best mechanical properties (tensile strength and hardness) and the lowest swelling ratio, while the material system in the ratio 4:1 shows the best interlaminar properties and adhesion capabilities.
In hybridization different fibers are stacked layer by layer to produce laminates have specific strength and stiffness and employed in light weight high strength applications. Physically mean fabricated hybrid composites used in aerospace, under water, body armors and armed forces establishment. In present work drop-weight impact response of hybrid composites were investigated by making laminates of hybrid composites. In Hybridization layers of E-glass (roving) and Kevlar 49 fabrics stacked with epoxy resin. The layers formulation was set up by hand layup method. Impregnationsof epoxy resin of commercial grade (601A) in fabrics were accomplished by VRTM (Vacuum Bagging Resin Transfer Molding) technique. Layup placementof Glass fibers/ Kevlar at 0°/90°, 45°/45° and 30°/60° were set for this work. Mechanical properties such as impact strength, bear resistance and break resistance were analyzed by usingASTM D-256 and D-3763 standard.Experimental investigation was conducted using instrumented Dart impact and Izod Impact test. E-glass/Kevlar 49 at layup 0°/90°and 30°/60°exhibited improvedimpact strength than 45°/45°. The surface morphology and fractography were also investigated by capturing different images of Specimens by using the SEM (Scanning Electron Microscopy). The fiberreinforcement and matrix fracture were also observed by using SEM.The SEM images suggest that epoxy resin tightly bonded with Kevlar fibers whereas Glass fibers were pulled out from laminations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.