The coronavirus disease 2019 (COVID-19) pandemic has been severely impacting global society since December 2019. The related findings such as vaccine and drug development have been reported in biomedical literature—at a rate of about 10 000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation and interpretation. For instance, LitCovid is a literature database of COVID-19-related articles in PubMed, which has accumulated more than 200 000 articles with millions of accesses each month by users worldwide. One primary curation task is to assign up to eight topics (e.g. Diagnosis and Treatment) to the articles in LitCovid. The annotated topics have been widely used for navigating the COVID literature, rapidly locating articles of interest and other downstream studies. However, annotating the topics has been the bottleneck of manual curation. Despite the continuing advances in biomedical text-mining methods, few have been dedicated to topic annotations in COVID-19 literature. To close the gap, we organized the BioCreative LitCovid track to call for a community effort to tackle automated topic annotation for COVID-19 literature. The BioCreative LitCovid dataset—consisting of over 30 000 articles with manually reviewed topics—was created for training and testing. It is one of the largest multi-label classification datasets in biomedical scientific literature. Nineteen teams worldwide participated and made 80 submissions in total. Most teams used hybrid systems based on transformers. The highest performing submissions achieved 0.8875, 0.9181 and 0.9394 for macro-F1-score, micro-F1-score and instance-based F1-score, respectively. Notably, these scores are substantially higher (e.g. 12%, higher for macro F1-score) than the corresponding scores of the state-of-art multi-label classification method. The level of participation and results demonstrate a successful track and help close the gap between dataset curation and method development. The dataset is publicly available via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ for benchmarking and further development.
Database URL https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/
In this paper, we analyze the influence of social status on opinion dynamics and consensus building in collaboration networks. To that end, we simulate the diffusion of opinions in empirical networks and take into account both the network structure and the individual differences of people reflected through their social status. For our simulations, we adapt a well-known Naming Game model and extend it with the Probabilistic Meeting Rule to account for the social status of individuals participating in a meeting. This mechanism is sufficiently flexible and allows us to model various society forms in collaboration networks, as well as the emergence or disappearance of social classes. In particular, we are interested in the way how these society forms facilitate opinion diffusion. Our experimental findings reveal that (i) opinion dynamics in collaboration networks is indeed affected by the individuals' social status and (ii) this effect is intricate and nonobvious. Our results suggest that in most of the networks the social status favors consensus building. However, relying on it too strongly can also slow down the opinion diffusion, indicating that there is a specific setting for an optimal benefit of social status on the consensus building. On the other hand, in networks where status does not correlate with degree or in networks with a positive degree assortativity consensus is always reached quickly regardless of the status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.