The development of three-dimensional (3-D), characterisation techniques with high spatial and mass resolution is crucial for understanding and developing advanced materials for many engineering applications as well as for understanding natural materials. In recent decades, atom probe tomography (APT), which combines a point projection microscope and time-offlight mass spectrometer, has evolved to be an excellent characterisation technique capable of providing 3-D nanoscale characterisation of materials with sub-nanometer scale spatial resolution, with equal sensitivity for all elements. This review discusses the current state, as of APT instrumentation, new developments in sample preparation methods, experimental procedures for different material classes, reconstruction of APT results, the current status of correlative microscopy, and application of APT for microstructural characterisation in established scientific areas like structural materials as well as new applications in semiconducting nanowires, semiconductor devices, battery materials, catalyst materials, geological materials, and biological materials. Finally, a brief perspective is given regarding the future of APT.
Strengthening by precipitation of second phase is the guiding principle for the development of a host of high strength structural alloys, in particular, aluminium alloys for transportation sector. Higher efficiency and lower emission demands use of alloys at higher operating temperatures (200 °C–250 °C) and stresses, especially in applications for engine parts. Unfortunately, most of the precipitation hardened aluminium alloys that are currently available can withstand maximum temperatures ranging from 150–200 °C. This limit is set by the onset of the rapid coarsening of the precipitates and consequent loss of mechanical properties. In this communication, we present a new approach in designing an Al-based alloy through solid state precipitation route that provides a synergistic coupling of two different types of precipitates that has enabled us to develop coarsening resistant high-temperature alloys that are stable in the temperature range of 250–300 °C with strength in excess of 260 MPa at 250 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.