The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This review article, dedicated to the bicentenary celebration of Sir George Gabriel Stokes' birthday, presents the state-of-the-science of terminal fall velocity, highlighting his rich legacy from the perspective of fluvial hydraulics. It summarizes the fluid drag on a particle and the current status of the drag coefficient from both the theoretical and empirical formulations, highlighting the three major realms-Stokesian, transitional and Newtonian realms. The force system that drives the particle motion falling through a fluid is described. The response of terminal fall velocity to key factors, which include particle shape, hindered settling and turbulence (nonlinear drag, vortex trapping, fast tracking and effects of loitering), is delineated. The article puts into focus the impact of terminal fall velocity on fluvial hydraulics, discussing the salient role that the terminal fall velocity plays in governing the hydrodynamics of the sediment threshold, bedload transport and suspended load transport. Finally, an innovative perspective is presented on the subject's future research track, emphasizing open questions.
In this study, macro-rough flows over beds with different permeability values are simulated using the large-eddy simulation, and the results are analysed by applying the double-averaging (DA) methodology. Spheres of different sizes and arrangements were used to form the beds, which are deemed to be permeable granular beds. The influence of bed permeability on the turbulence dynamics and structure is investigated. It was observed that the scales of the spanwise vortical structures over more permeable beds are larger than those over less permeable beds. This is attributed to large-scale spanwise-alternate strips of varying Reynolds shear stress (RSS), emerging from the surface of macro-rough elements for the permeable beds. The DA stress balance suggests that the time-averaged spanwise vortical structure leads to a damping in DA RSS and an unusual peak of the form-induced stress in the main flow. In the streamwise direction, both large turbulent structures that originate from the Kelvin–Helmholtz-type instability and small turbulent structures that are associated with the turbulent transport across the gaps of the roughness elements are more prevalent over highly permeable beds. Near the bed, the relative magnitude of turbulent events shows a transition from a ejections-dominating to sweeps-dominating zone with vertical distance. Further, several hydrodynamic characteristics normalized by inner scales (kinematic viscosity to shear velocity ratio) show a greater dependency on permeability Reynolds number than those normalized by sediment size. The study provides an insight into the mechanism of mass transfer near the fluid–particle interface, which is vital to benthic and aquatic ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.