Treatment of neonatal sepsis has become a challenge with the emergence of carbapenemase-producing bacteria. This study documents the trend of carbapenem susceptibility in Enterobacteriaceae that caused septicaemia in neonates over a five year period (2007–2011) and the molecular characterisation of Enterobacteriaceae resistant to carbapenems and cephalosporins. Hundred and five Enterobacteriaceae including Escherichia coli (n = 27), Klebsiella pneumoniae (n = 68) and Enterobacter spp. (n = 10) were isolated from blood of septicaemic neonates followed by antibiotic susceptibility tests, determination of MIC values, phenotypic and genotypic detection of β-lactamases. Carbapenem was the most active antimicrobial tested after tigecycline. CTX-M type was the most prevalent ESBL throughout the period (82%). New Delhi Metallo-β-lactamase-1 (NDM-1), which is a recent addition to the carbapenemase list, was the only carbapenemase identified in our setting. Fourteen percent of the isolates possessed bla NDM-1. Carbapenem non-susceptibility was first observed in 2007 and it was due to loss of Omp F/Ompk36 in combination with the presence of ESBLs/AmpCs. NDM-1 first emerged in E. coli during 2008; later in 2010, the resistance was detected in K. pneumoniae and E. cloacae isolates. NDM-1-producing isolates were resistant to other broad-spectrum antibiotics and possessed ESBLs, AmpCs, 16S-rRNA methylases, AAC(6′)-Ib-cr, bleomycin resistant gene and class 1 integron. Pulsed field gel electrophoresis of the NDM-1-producing isolates indicated that the isolates were clonally diverse. The study also showed that there was a significantly higher incidence of sepsis caused by NDM-1-harbouring isolates in the male sex, in neonates with low birth weight and neonates born at an extramural centre. However, sepsis with NDM-1-harbouring isolates did not result in a higher mortality rate. The study is the first to review the carbapenem resistance patterns in neonatal sepsis over an extended period of time. The study highlights the persistence of ESBLs (CTX-Ms) and the emergence of NDM-1 in Enterobacteriaceae in the unit.
The study showed for the first time the trend of tigecycline susceptibility in E. coli and K. pneumoniae causing neonatal septicaemia. Tigecycline still has potent antimicrobial effects against most ESBL- or carbapenemase-producing K. pneumoniae and E. coli, but the increasing MIC values make it essential to be vigilant.
Carbapenem-resistant determinants and their surrounding genetic structure were studied in Acinetobacter spp. from neonatal sepsis cases collected over 7 years at a tertiary care hospital. Acinetobacter spp. (n = 68) were identified by ARDRA followed by susceptibility tests. Oxacillinases, metallo-β-lactamases (MBLs), extended-spectrum β-lactamases and AmpCs, were detected phenotypically and/or by PCR followed by DNA sequencing. Transconjugants possessing the blaNDM−1(New Delhi metallo-β-lactamase) underwent further analysis for plasmids, integrons and associated genes. Genetic environment of the carbapenemases were studied by PCR mapping and DNA sequencing. Multivariate logistic regression was used to identify risk factors for sepsis caused by NDM-1-harboring organisms. A. baumannii (72%) was the predominant species followed by A. calcoaceticus (10%), A. lwoffii (6%), A. nosocomialis (3%), A. junni (3%), A. variabilis (3%), A. haemolyticus (2%), and 14TU (2%). Fifty six percent of the isolates were meropenem-resistant. Oxacillinases present were OXA-23-like, OXA-58-like and OXA-51-like, predominately in A. baumannii. NDM-1 was the dominant MBL (22%) across different Acinetobacter spp. Isolates harboring NDM-1 also possessed bla(VIM−2, PER−1, VEB−2, CTX−M−15), armA, aac(6′)Ib, aac(6′)Ib-cr genes. blaNDM−1was organized in a composite transposon between two copies of ISAba125 in the isolates irrespective of the species. Further, OXA-23-like gene and OXA-58-like genes were linked with ISAba1 and ISAba3 respectively. Isolates were clonally diverse. Integrons were variable in sequence but not associated with carbapenem resistance. Most commonly found genes in the 5′ and 3′conserved segment were aminoglycoside resistance genes (aadB, aadA2, aac4′), non-enzymatic chloramphenicol resistance gene (cmlA1g) and ADP-ribosylation genes (arr2, arr3). Outborn neonates had a significantly higher incidence of sepsis due to NDM-1 harboring isolates than their inborn counterparts. This study demonstrates the significance of both A. baumannii and other species of Acinetobacter in cases of neonatal sepsis over an extended period. Oxacillinases and blaNDM−1 are the major contributors to carbapenem resistance. The dissemination of the blaNDM−1 is likely linked to Tn125 in diverse clones of the isolates.
The time frame of isolation and clonal identity indicated a possible transfer of bla(NDM-1) from imipenem-resistant GNB to the imipenem-susceptible E. coli, which subsequently caused septicaemia. This establishes the promiscuous nature of bla(NDM-1) and emphasizes the need for the early recognition of similar isolates.
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and “antimicrobial resistance” (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.