Purpose: Because of disease heterogeneity, limited studies on effective chemotherapies and therapeutic agents for advanced gastric cancer are available. Erythrocyte membrane protein band 4.1-like 5 (EPB41L5) has critical roles in renal and breast cancer metastasis. However, its role in metastatic gastric cancer remains unknown.Experimental Design: The specimens of 78 gastric cancer patients were analyzed by oligonucleotide microarray and survival analysis. In vitro experiments and metastatic mice models were used to assess the effects of EPB41L5 on gastric cancer metastasis.Results: Gastric cancer patients with high EPB41L5 levels had poor prognosis and low survival rate. Further, TGFb1-induced EPB41L5 expression promoted gastric cancer cell migration and invasion by Smad-dependent TGFb signaling. Phospho-Smad3 recruitment to the EPB41L5 promoter was significantly inhibited by a TGFb inhibitor. EPB41L5 overexpression increased lung metastasis of gastric cancer cells in nude mice, which was completely reversed by anti-EPB41L5 monoclonal antibody treatment. Importantly, p120-catenin knockdown abolished EPB41L5-enhanced gastric cancer cell metastasis. Anti-EPB41L5 monoclonal antibody treatment blocked the association of EPB41L5 with p120-catenin.Conclusions: TGFb/EPB41L5/p120-catenin axis regulates gastric cancer cell metastasis, and EPB41L5 is a promising therapeutic target for advanced gastric cancer.
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial lung disease with a poor prognosis similar to that of malignancy. The causes of IPF are not clearly known, and there is no effective therapy to date. In this study, the natural compound plumbagin, which was isolated from Plumbago rosea root extract, was screened for p300 inhibitory activity. Plumbagin specifically inhibited the activity of p300 toward histone acetyltransferases. Plumbagin treatment significantly suppressed transforming growth factor-b-induced profibrotic target-gene expression and proliferation of fibroblast cell lines. Moreover, plumbagin significantly inhibited bleomycin-induced pulmonary fibrosis in mice. Taken together, these data demonstrate the inhibitory effects of plumbagin on lung fibrosis and its promise as a therapeutic agent for IPF.
Gastric cancer is the fourth most common cancer worldwide. Despite the high incidence of gastric cancer, efficient chemotherapy treatments still need to be developed. In this study, we examined the anticancer effects of endoplasmic reticulum (ER) stress inducer tunicamycin in gastric cancer. Previously, we found that overexpression of WLS1/GPR177 correlated with poor prognosis in patients with gastric cancer. Furthermore, tunicamycin treatment downregulated GPR177 expression in a dose-dependent manner. GPR177 transports WNT ligand from ER to the plasma membrane, mediating its secretion to the extracellular matrix. In gastric cancer cells, GPR177 preferentially localizes to the ER. Small interfering RNA-mediated knockdown of GPR177 leads to sensitization to ER stress and induces apoptosis of cancer cells along with tunicamycin treatment. GPR177 suppression promoted the ER stress-mediated proapoptotic pathway, such as PERK-CHOP cascade. Furthermore, fluorouracil treatment combined with tunicamycin dramatically reduced cancer cell proliferation. Efficacy of tunicamycin chemotherapy treatments depended on GPR177 expression in gastric cancer cell lines. Together, our results indicate that ER stress can potentiate anticancer effects and suggest GPR177 as a potential gastric cancer therapeutic target.
<div>AbstractPurpose:<p>Because of disease heterogeneity, limited studies on effective chemotherapies and therapeutic agents for advanced gastric cancer are available. Erythrocyte membrane protein band 4.1-like 5 (EPB41L5) has critical roles in renal and breast cancer metastasis. However, its role in metastatic gastric cancer remains unknown.</p>Experimental Design:<p>The specimens of 78 gastric cancer patients were analyzed by oligonucleotide microarray and survival analysis. <i>In vitro</i> experiments and metastatic mice models were used to assess the effects of EPB41L5 on gastric cancer metastasis.</p>Results:<p>Gastric cancer patients with high EPB41L5 levels had poor prognosis and low survival rate. Further, TGFβ1-induced EPB41L5 expression promoted gastric cancer cell migration and invasion by Smad-dependent TGFβ signaling. Phospho-Smad3 recruitment to the <i>EPB41L5</i> promoter was significantly inhibited by a TGFβ inhibitor. EPB41L5 overexpression increased lung metastasis of gastric cancer cells in nude mice, which was completely reversed by anti-EPB41L5 monoclonal antibody treatment. Importantly, p120-catenin knockdown abolished EPB41L5-enhanced gastric cancer cell metastasis. Anti-EPB41L5 monoclonal antibody treatment blocked the association of EPB41L5 with p120-catenin.</p>Conclusions:<p>TGFβ/EPB41L5/p120-catenin axis regulates gastric cancer cell metastasis, and EPB41L5 is a promising therapeutic target for advanced gastric cancer.</p></div>
<div>AbstractPurpose:<p>Because of disease heterogeneity, limited studies on effective chemotherapies and therapeutic agents for advanced gastric cancer are available. Erythrocyte membrane protein band 4.1-like 5 (EPB41L5) has critical roles in renal and breast cancer metastasis. However, its role in metastatic gastric cancer remains unknown.</p>Experimental Design:<p>The specimens of 78 gastric cancer patients were analyzed by oligonucleotide microarray and survival analysis. <i>In vitro</i> experiments and metastatic mice models were used to assess the effects of EPB41L5 on gastric cancer metastasis.</p>Results:<p>Gastric cancer patients with high EPB41L5 levels had poor prognosis and low survival rate. Further, TGFβ1-induced EPB41L5 expression promoted gastric cancer cell migration and invasion by Smad-dependent TGFβ signaling. Phospho-Smad3 recruitment to the <i>EPB41L5</i> promoter was significantly inhibited by a TGFβ inhibitor. EPB41L5 overexpression increased lung metastasis of gastric cancer cells in nude mice, which was completely reversed by anti-EPB41L5 monoclonal antibody treatment. Importantly, p120-catenin knockdown abolished EPB41L5-enhanced gastric cancer cell metastasis. Anti-EPB41L5 monoclonal antibody treatment blocked the association of EPB41L5 with p120-catenin.</p>Conclusions:<p>TGFβ/EPB41L5/p120-catenin axis regulates gastric cancer cell metastasis, and EPB41L5 is a promising therapeutic target for advanced gastric cancer.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.