We use meromorphic quadratic differentials with higher order poles to parametrize the Teichmüller space of crowned hyperbolic surfaces. Such a surface is obtained on uniformizing a compact Riemann surface with marked points on its boundary components, and has non-compact ends with boundary cusps. This extends Wolf's parametrization of the Teichmüller space of a closed surface using holomorphic quadratic differentials. Our proof involves showing the existence of a harmonic map from a punctured Riemann surface to a crowned hyperbolic surface, with prescribed principal parts of its Hopf differential which determine the geometry of the map near the punctures.
Abstract. Let S be a closed oriented surface of genus g ≥ 2. Fix an arbitrary non-elementary representation ρ : π 1 (S) → SL 2 (C) and consider all marked (complex) projective structures on S with holonomy ρ. We show that their underlying conformal structures are dense in the moduli space of S.
A meromorphic quadratic differential with poles of order two, on a compact Riemann surface, induces a measured foliation on the surface, with a spiralling structure at any pole that is determined by the complex residue of the differential at the pole. We introduce the space of such measured foliations, and prove that for a fixed Riemann surface, any such foliation is realized by a quadratic differential with second order poles at marked points. Furthermore, such a differential is uniquely determined if one prescribes complex residues at the poles that are compatible with the transverse measures around them. This generalizes a theorem of Hubbard and Masur concerning holomorphic quadratic differentials on closed surfaces, as well as a theorem of Strebel for the case when the foliation has only closed leaves. The proof involves taking a compact exhaustion of the surface, and considering a sequence of equivariant harmonic maps to real trees that do not have a uniform bound on total energy.
We determine the image of the monodromy map for meromorphic projective structures with poles of orders greater than two. This proves the analogue of a theorem of Gallo-Kapovich-Marden, and answers a question of Allegretti and Bridgeland. Our proof uses coordinates on the moduli space of framed representations arising from the work of Fock and Goncharov.
A uniform tiling of the hyperbolic plane is a tessellation by regular geodesic polygons with the property that each vertex has the same vertex-type, which is a cyclic tuple of integers that determine the number of sides of the polygons surrounding the vertex. We determine combinatorial criteria for the existence, and uniqueness, of a uniform tiling with a given vertex type, and pose some open questions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.