Aim This study aims to report preclinical validation, and the first clinical treatment of total bone marrow irradiation (TMI) and total bone marrow and lymph nodal irradiation (TMLI) using Volumetric modulated arc therapy in Halcyon-E ring gantry linear accelerator. Preclinical validation includes simulation, planning, patient-specific QA, and dry run. Material and method Four patients, two female and two male, with body weights of 116 kg, 52 kg, 64 kg, and 62 kg; with two with chronic myeloid leukemia, one each with acute lymphoblastic leukemia and acute myeloid leukemia (AML) were simulated and planned for TMI/TMLI. Patients were immobilized with a full-body vacuum bag. Head first supine (HFS) and Feet first supine (FFS) CT scans were acquired from head to knee and knee to toe. Planning target volume (PTV) was created with a uniform margin of 6 mm over the total bone marrow/bone marrow + lymph nodes. HFS and FFS PTVs were optimized independently using 6MV unflatten energy for 12 Gy in 6 fractions. Plans were merged to create the resultant dose distribution using a junction bias dose matching technique. The total number of isocenters was ≤ 10 per CT set, and two to four full arcs were used for each isocenter. A junction dose gradient technique was used for dose feathering between arcs between adjacent isocenters. Result Only one female patient diagnosed as AML received the TMLI treatment, while the other three patients dropped out due to clinical complications and comorbidities that developed in the time between simulation and treatment. The result presented has been averaged over all four patients. For PTV, 95% dose was normalised to 95% volume, PTV_V107% receiving 3.3 ± 3.1%. Total lung mean and V12Gy were 1048.6 ± 107.1 cGy and 19.5 ± 12.1%. Maximum lens doses were 489.5 ± 35.5 cGy (left: L) and 497 ± 69.2 cGy (right: R). The mean cardiac and bilateral kidney doses were 921.75 ± 89.2 cGy, 917.9 ± 63.2 cGy (L), and 805.9 ± 9.7 cGy (R). Average Monitor Unit was 7738.25 ± 1056.6. The median number of isocenters was 17(HFS+FFS), average MU/Dose (cGy) ratio per isocenter was 2.28 ± 0.3. Conclusion Halcyon-E ring gantry linear accelerator capable of planning and delivering TMI/TMLI.
This study evaluates the volumetric modulated arc therapy (VMAT) dosimetric comparison between Halcyon ring gantry and TrueBeam c-arm linear accelerators for craniospinal irradiation (CSI) of the neuro-axis. 25 patients, who received treatment for medulloblastoma and primitive neuro-ectodermal tumors between 2018 and 2021, were planned for VMAT in True Beam (TB), and Halcyon (HAL) linear accelerators using 6 MV unflattened (FFF) photon beams (HALFFF and TBFFF). Dose-volume statistics for the target and organs at risk (OARs) and the total number of monitoring units (MUs) in the treatment plans were compared which included dose received by 95% PTV volume (V95%), volume receiving ≥ 107% dose, homogeneity index (HI), conformity index (PI), MU and dose spillage (D10%, D30%, D50%, D70%, D90%). In all 26 OARs were considered of which five were serial and the remaining were parallel structures. For the former, the dose received by 0.2 cm3, volume = D0.2 cm3) were evaluated and for the latter mean dose were evaluated. Both arms were statistically compared with paired sample t-test with a significant value of ≤ 0.05. 11 patients received treatment with the Halcyon and the rest 14 in the TrueBeam C-arm linear accelerator. Patients in the low- and intermediate-risk category (n = 13) received 23.4 Gy in 13 fractions. The remaining patients were in the high-risk category and received 35 Gy in 21 fractions or 36 Gy in 20 fractions. For HALFFF and TBFFF, PTVV95% were 97.5 ± 0.8% and 97.4 ± 0.9% respectively (p = 0.371) while the V107% were 0.6 ± 0.4% and 0.5 ± 0.5 respectively (p = 0.504). However, the number of monitoring units showed statistical significance (p < 0.001) with values of 1331.9 ± 243.4 MU and 1089 ± 206.7 MU respectively for the HAL and TB plans. The differences in spillage dose were also statistically significant, favouring HAL plans at D30% (p = 0.002), D50% (p < 0.001), D70% (p = 0.039), and D90% (p = 0.01) level except for D10% (p = 0.090). Conformity index also showed statistical significance with PI_HAL = 0.9 ± 0.02 and PI_TB = 0.89 ± 0.03 (p = 0.029). For 10 of the 21 parallel structures, the mean dose differences were statistically significant in favouring of HAL plans. Halcyon based VMAT CSI plans are dosimetrically superior in terms of organ dose, especially for the large organs, and offer lower spillage doses than the TrueBeam plans. Plans generated by both linear accelerators are suitable for the patients’ treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.